Rademacher Averages: Theory and Practice

Matteo Riondato - Labs, Two Sigma Investments LP

Dagstuhl - April 6, 2017

Outline

I. DATA MINING, SAMPLING, AND ISSUES THEREOF

II. RADEMACHER AVERAGES

III. BETWEENNESS CENTRALITY ESTIMATION WITH RADEMACHER AVERAGES

I. Data mining, sampling, and issues thereof

What happens in data mining?

GIVEN:

- Dataset \mathcal{D}
- Family \mathcal{F} of functions $f : \mathcal{D} \to [a, b] \subseteq \mathbb{R}$

GOAL: Compute $m_{\mathcal{D}}(f) = \frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} f(x)$, for each $f \in \mathcal{F}$

EXAMPLES:

- \mathcal{D} is a database, \mathcal{F} is a family of SQL queries;
- \mathcal{D} is a graph G = (V, E), \mathcal{F} contains an f_v for each $v \in V$

ISSUE: *Exact* computation of every $m_{\mathcal{D}}(f)$, $f \in \mathcal{F}$, is too expensive on large datasets

What should we aim for?

INTUITION: in many applications, *high-quality approximations* are sufficient

Definition (*e*-approximation)

Given $\varepsilon \in (0, 1)$, a ε -approximation to \mathcal{F} on \mathcal{D} is a collection

 $ilde{B} = \{ ilde{m}(f), f \in \mathcal{F}\}$

such that

 $| ilde{m}(f) - \mathsf{m}_{\mathcal{D}}(f)| \leq arepsilon, ext{ for each } f \in \mathcal{F}$

A definition with relative/multiplicative error is also possible

How can we get a ε -approximation?

SAMPLING!

How to proceed:

- ${f 1}$ Define a probability distribution π on ${\cal D}$
- ${\bf 2}\,$ Create a sample ${\cal S}$ by sampling ${\it enough}$ points independently from ${\cal D}$ according to π

3 Compute $\tilde{m}(f)$ on S, usually as $m_S(f) = \frac{1}{|S|} \sum_{x \in S} f(x)$

WE NEED:

- 1 A suitable π
- 2 An efficient sampling scheme
- **3** A sample size |S|, sufficient for \tilde{B} to be an ε -approximation, with prob. $\geq 1 \delta$... or a stopping condition to understand whether S is large enough

Isn't it obvious how to do it?

We want to compute a quantity ℓ such that

 $\Pr\left(\exists f \in \mathcal{F} \text{ s.t. } |\mathsf{m}_{\mathcal{S}}(f) - \mathsf{m}_{\mathcal{D}}(f)| > \varepsilon\right) < \delta$

The probability is taken over all samples of size ℓ .

IDEA: Use *tail bounds* for a single f, and then the *union bound* over \mathcal{F}

(SPOILER: It won't be that easy)

Let's make an example

Let each $f = f_A \in \mathcal{F}$ be the indicator function for some property A $(f(x) = 1 \text{ if } x \in \mathcal{D} \text{ satisfies } A, 0 \text{ othw.})$

Then $m_{\mathcal{D}}(f)$ is a proportion and $|\mathcal{S}|m_{\mathcal{S}}(f)$ has a Binomial distribution $B(|\mathcal{S}|, m_{\mathcal{D}}(f))$ Apply the Chernoff bound and then the union bound over \mathcal{F} :

$$\begin{split} \Pr\left(\exists f \in \mathcal{F} \text{ s.t. } |\mathsf{m}_{\mathcal{S}}(f) - \mathsf{m}_{\mathcal{D}}(f)| > \varepsilon\right) &\leq \sum_{f \in \mathcal{F}} \Pr\left(|\mathsf{m}_{\mathcal{S}}(f) - \mathsf{m}_{\mathcal{D}}(f)| > \varepsilon\right) \\ &\leq |\mathcal{F}| 2 \exp\left(-|\mathcal{S}|\varepsilon^2/3\right) \end{split}$$

For the r.h.s. to be at most δ , it must be

$$|\mathcal{S}| \ge rac{3}{arepsilon^2} \left(\ln |\mathcal{F}| + \ln rac{1}{\delta}
ight)$$

What's disappointing with this sample size?

$$|\mathcal{S}| \geq rac{3}{arepsilon^2} \left(\ln |\mathcal{F}| + \ln rac{1}{\delta}
ight)$$

What's disappointing with this sample size?

$$|\mathcal{S}| \geq rac{3}{arepsilon^2} \left(\ln |\mathcal{F}| + \ln rac{1}{\delta}
ight)$$

1. \mathcal{F} may be *infinite*. E.g., in the classification setting:

 $x = (w, y), y \in \{0, 1\}$, and $f_{\theta}(x)$ is the *loss* of a classifier c_{θ} on $x, \theta \in \Theta \subseteq R^{\ell}$ (S is the training set, $|m_{\mathcal{S}}(f) - m_{\mathcal{D}}(f)|$ is the *generalization error*)

What's disappointing with this sample size?

$$|\mathcal{S}| \geq rac{3}{arepsilon^2} \left(\ln |\mathcal{F}| + \ln rac{1}{\delta}
ight)$$

1. \mathcal{F} may be *infinite*. E.g., in the classification setting:

 $x = (w, y), y \in \{0, 1\}$, and $f_{\theta}(x)$ is the *loss* of a classifier c_{θ} on $x, \theta \in \Theta \subseteq R^{\ell}$ (S is the training set, $|m_{\mathcal{S}}(f) - m_{\mathcal{D}}(f)|$ is the *generalization error*)

2. The sample size does not depend on any characteristic of \mathcal{D}

E.g., on properties of the graph G = D

Why should we want such dependency on \mathcal{D} ?

To let the data speak!

For a fixed \mathcal{F} , computing an ε -approximation to \mathcal{F} may be more difficult on \mathcal{D}_1 than on \mathcal{D}_2 ;

 $\mathcal D$ can give information on the *sample complexity* of computing an ε -approximation

"In $|\mathcal{F}|$ " is a rough *measure of complexity* of the task, as it ignores \mathcal{D}

Are there better measures of sample complexity?

Yes! *Statistical learning theory* is "all" about them:

VC-dimension, pseudodimension, covering numbers, *Rademacher averages*, ... They allow to replace " $\ln |\mathcal{F}|$ " with $g(\mathcal{F}, \mathcal{D})$ or even $g(\mathcal{F}, \mathcal{S})$: *let the data speak*! CHALLENGES:

- 1) Developed for *supervised learning*;
- 2) Long-standing reputation of being only of theoretical interest;
- 3) Not exactly straightforward to interpret, compute, bound

Are there better measures of sample complexity?

Yes! *Statistical learning theory* is "all" about them:

VC-dimension, pseudodimension, covering numbers, *Rademacher averages*, ... They allow to replace " $\ln |\mathcal{F}|$ " with $g(\mathcal{F}, \mathcal{D})$ or even $g(\mathcal{F}, \mathcal{S})$: *let the data speak*! CHALLENGES:

- 1) Developed for *supervised learning*;
- 2) Long-standing reputation of being only of theoretical interest;
- 3) Not exactly straightforward to interpret, compute, bound:

$$\sup_{f\in\mathcal{F}}|\mathsf{m}_{\mathcal{S}}(f)-\mathsf{m}_{\mathcal{D}}(f)|\leq 2\mathbb{E}_{\boldsymbol{\lambda}}\left[\sup_{f\in\mathcal{F}}\frac{1}{\ell}\sum_{i=1}^{\ell}\lambda_{i}f(x_{i})\right]+\sqrt{\frac{\ln\frac{3}{\delta}}{2\ell}}$$

Appeal:

Elegant, insightful theory: "Nothing is more practical than a good theory."

II. Rademacher Averages

What are Rademacher averages?

A binary r.v. λ has a *Rademacher* distribution if $Pr(\lambda = 1) = Pr(\lambda = -1) = 1/2$

Let $\ell = |S|$ and let $\lambda_1, \ldots, \lambda_\ell$ be ℓ independent Rademacher r.v.'s.

Definition (Rademacher Average)

The Rademacher average of \mathcal{F} is

$$\mathcal{R}_\ell(\mathcal{F}) = \mathbb{E}_{\mathcal{S},\lambda}\left[\max_{f\in\mathcal{F}}rac{1}{\ell}\sum_{i=1}^\ell\lambda_i f(x_i)
ight]$$

Rademacher averages enjoy enormous success in statistical learning theory

How do we get to such weird definition?

We have

$$\Pr\left(\exists f \in \mathcal{F} \text{ s.t. } |\mathsf{m}_{\mathcal{S}}(f) - \mathsf{m}_{\mathcal{D}}(f)| > \varepsilon\right) = \Pr\left(\max_{f \in \mathcal{F}} |\mathsf{m}_{\mathcal{S}}(f) - \mathsf{m}_{\mathcal{D}}(f)| > \varepsilon\right)$$
$$= \Pr\left(\max_{f \in \mathcal{F}} [\mathsf{m}_{\mathcal{S}}(f) - \mathsf{m}_{\mathcal{D}}(f)] > \varepsilon\right) + \Pr\left(\max_{f \in \mathcal{F}} [\mathsf{m}_{\mathcal{D}}(f) - \mathsf{m}_{\mathcal{S}}(f)] > \varepsilon\right)$$

Let's look at

$$\mathbb{E}_{\mathcal{S}}\left[\max_{f\in\mathcal{F}}\left[\mathsf{m}_{\mathcal{S}}(f)-\mathsf{m}_{\mathcal{D}}(f)\right]\right]=\mathbb{E}_{\mathcal{S}}\left[\max_{f\in\mathcal{F}}\left[\mathsf{m}_{\mathcal{S}}(f)-\mathbb{E}_{\mathcal{S}}\left[\mathsf{m}_{\mathcal{S}}(f)\right]\right]\right]$$

Theorem

$$\mathbb{E}_{\mathcal{S}}\left[\max_{f\in\mathcal{F}}\left[m_{\mathcal{S}}(f)-\mathbb{E}_{\mathcal{S}}\left[m_{\mathcal{S}}(f)\right]\right]\right]\leq 2\mathcal{R}_{\ell}(\mathcal{F})$$

Proof idea

Let $S' = \{x'_1, \dots, x'_\ell\}$ be a second sample, independent from S $\mathbb{E}_{\mathcal{S}}\left[\max_{f \in \mathcal{F}} \left[\mathsf{m}_{\mathcal{S}}(f) - \mathbb{E}_{\mathcal{S}}\left[\mathsf{m}_{\mathcal{S}}(f)\right]\right]\right] = \mathbb{E}_{\mathcal{S}}\left[\max_{f \in \mathcal{F}} \left[\mathsf{m}_{\mathcal{S}}(f) - \mathbb{E}_{\mathcal{S}'}\left[\mathsf{m}_{\mathcal{S}'}(f)\right]\right]\right]$ (Jensen's Inequality) $\leq \mathbb{E}_{\mathcal{S},\mathcal{S}'} \left[\max_{f \in \mathcal{F}} \left[m_{\mathcal{S}}(f) - m_{\mathcal{S}'}(f) \right] \right]$ $\leq \mathbb{E}_{\mathcal{S},\mathcal{S}'} \left| \max_{f \in \mathcal{F}} \left[\frac{1}{\ell} \sum_{i=1}^{\ell} f(x_i) - \frac{1}{\ell} \sum_{i=1}^{\ell} f(x'_i) \right] \right|$ $\leq \mathbb{E}_{\mathcal{S},\mathcal{S}',\lambda} \left[\max_{f \in \mathcal{F}} \left[\frac{1}{\ell} \sum_{i=1}^{\ell} \lambda_i \left(f(x_i) - f(x'_i) \right) \right] \right]$ $\leq \mathbb{E}_{\mathcal{S},\lambda} \left| \max_{f \in \mathcal{F}} \left| rac{1}{\ell} \sum_{i=1}^{\ell} \lambda_i f(x_i) \right|
ight| + \mathbb{E}_{\mathcal{S}',\lambda} \left| \max_{f \in \mathcal{F}} \left| rac{1}{\ell} \sum_{i=1}^{\ell} \lambda_i f(x_i') \right|
ight|$ $< 2\mathcal{R}_{\ell}(\mathcal{F})$

Where do we go from here?

Theorem (McDiarmid's inequality)

Let X_1, \ldots, X_{ℓ} be independent random variables and let $h(x_1, \ldots, x_{\ell})$ be a function s.t. a change in variable x_i can change the value of the function by no more than c_i : $\sup_{x_1, \ldots, x_{\ell}, x'_i} |h(x_1, \ldots, x_i, \ldots, x_{\ell}) - h(x_1, \ldots, x'_i, \ldots, x_{\ell})| \le c_i$

Then, for any $\epsilon > 0$

$$\Pr\left(h(X_1,\ldots,X_\ell)-\mathbb{E}[h(X_1,\ldots,X_\ell)]>\epsilon\right)\leq \exp\left(-2\epsilon^2\Big/\sum_{i=1}^\ell c_i^2\right) \ .$$

How do we use McDiarmid's inequality?

Recall the *bounded differences condition* from McDiarmid's inequality:

$$\sup_{x_1,\ldots,x_\ell,x_i'} \left| h(x_1,\ldots,x_i,\ldots,x_\ell) - h(x_1,\ldots,x_i',\ldots,x_\ell) \right| \le c_i$$

The function $h(x_1, ..., x_\ell) = h(S) = \max_{f \in \mathcal{F}} [m_S(f) - m_D(f)]$ satisfies the condition with $c_i = \frac{|b-a|}{\ell}$ (in the rest of the talk we assume |b-a| = 1)

The same holds for the function $h(x_1, \ldots, x_\ell) = h(\mathcal{S}) = \mathbb{E}_{\lambda} \left[\max_{f \in \mathcal{F}} \frac{1}{\ell} \sum_{i=1}^{\ell} \lambda_i f(x_i) \right]$

This function is the *empirical Rademacher average* of \mathcal{F} on \mathcal{S} . We denote it with $\mathcal{R}_{\mathcal{S}}(\mathcal{F})$. Its expectation is $\mathsf{R}_{\ell}(\mathcal{F})$.

Let's put everything together

Let's start from

$$\mathbb{E}\left[\max_{f\in\mathcal{F}}\left[\mathsf{m}_{\mathcal{S}}(f)-\mathsf{m}_{\mathcal{D}}(f)
ight]
ight]\leq 2\mathcal{R}_{\ell}(\mathcal{F})$$

Now apply McDiarmid to $\max_{f \in \mathcal{F}} [m_{\mathcal{S}}(f) - m_{\mathcal{D}}(f)]$. With probability $\geq 1 - \delta/3$:

$$\max_{f\in\mathcal{F}}\left[\mathsf{m}_{\mathcal{S}}(f)-\mathsf{m}_{\mathcal{D}}(f)
ight]\leq 2\mathcal{R}_{\ell}(\mathcal{F})+\sqrt{rac{\lnrac{3}{\delta}}{\ell}}$$

Now apply McDiarmid to $\mathcal{R}_{\mathcal{S}}(\mathcal{F})$. With probability at least $\geq 1 - 2\delta/3$:

$$\max_{f\in\mathcal{F}}\left[\mathsf{m}_{\mathcal{S}}(f)-\mathsf{m}_{\mathcal{D}}(f)\right]\leq 2\mathcal{R}_{\mathcal{S}}(\mathcal{F})+3\sqrt{\frac{\ln\frac{3}{\delta}}{\ell}}$$

Applying McDiarmid to $\max_{f \in \mathcal{F}} [m_{\mathcal{D}}(f) - m_{\mathcal{S}}(f)]$. With probability at least $\geq 1 - \delta$:

$$\max_{f\in\mathcal{F}}|\mathsf{m}_{\mathcal{S}}(f)-\mathsf{m}_{\mathcal{D}}(f)|\leq 2\mathcal{R}_{\mathcal{S}}(\mathcal{F})+3\sqrt{\frac{\ln\frac{3}{\delta}}{\ell}}$$

Formally...

Theorem

Let
$$S$$
 be a fixed sample of size ℓ . With probability at least $1 - \delta$,

$$\max_{f \in \mathcal{F}} |m_{\mathcal{S}}(f) - m_{\mathcal{D}}(f)| \leq 2\mathcal{R}_{\mathcal{S}}(\mathcal{F}) + 3\sqrt{\frac{\ln \frac{3}{\delta}}{\ell}}$$

The quantity on the r.h.s. depends only on the sample S.

We can compute the "quality" of a sample from the sample itself!

... but how do we compute $\mathcal{R}_{\mathcal{S}}(\mathcal{F})$?

How do we compute $\mathcal{R}_{\mathcal{S}}(\mathcal{F})$?

Given \mathcal{S} , define, for each $f \in \mathcal{F}$,

$$\mathbf{v}_f = (f(x_1), \ldots, f(x_\ell))$$

Consider the set

$$\mathcal{V}_{\mathcal{S}} = \{\mathbf{v}_f, f \in \mathcal{F}\}$$

If the co-domain of the functions $f \in \mathcal{F}$ is finite, then $\mathcal{V}_{\mathcal{S}}$ is finite Then $|\mathcal{V}_{\mathcal{S}}| \leq |\mathcal{F}|$, and usually $|\mathcal{V}_{\mathcal{S}} \ll |\mathcal{F}|$.

Theorem (Massart's Finite Class Lemma)

$$\mathcal{R}_\mathcal{S}(\mathcal{F}) \leq \max_{\mathbf{v} \in \mathcal{V}_\mathcal{S}} \|\mathbf{v}\|_2 rac{\sqrt{2\ln |\mathcal{V}_\mathcal{S}|}}{\ell}$$

If we can keep track of $\mathcal{V}_{\mathcal{S}}$, or bound the max. $\|\cdot\|_2$, we have a bound to $\mathcal{R}_{\mathcal{S}}(\mathcal{F})$.

Why does it make sense?

$$\mathcal{R}_{\mathcal{S}}(\mathcal{F}) = \mathbb{E}_{\lambda} \left[\max_{f \in \mathcal{F}} \frac{1}{\ell} \sum_{i=1}^{\ell} \lambda_i f(x_i) \right]$$

Assume \mathcal{F} contains classifiers from \mathbb{R} to $\{-1,1\}$.

Assume that $\lambda_1, \ldots, \lambda_\ell$ are the labels of training set S. Then

 $\lambda_i f(x_i, \lambda_i) = 1$

when f correctly classifies x_i . -1 otherwise.

 $\mathcal{R}_{\mathcal{S}}(\mathcal{F})$ is high when, for any labeling $\lambda_1, \ldots, \lambda_\ell$, there is a function $f \in \mathcal{F}$ that correctly classify many points of the training set.

If this is the case, then \mathcal{F} can essentially fit ℓ random noise points, so it is a rich class Thus, learning the "correct" classifier requires more training points

Recap and comments

Rade.Avg. allow to compute a bound to the maximum deviation from the sample

For ε -approximation, keep sampling until the bound is less than ε (caveats)

Keeping track of $\mathcal{V}_{\mathcal{S}}$ is not always straightforward, but it's the key task

The bounds presented here have much tighter variants

There are relative/multiplicative error variants

III. Betweenness centrality estimation with Rademacher Averages

What am I going to talk about?

ABRA: A *sampling*-based algorithm for *betweenness centrality estimation* on static and dynamic *graphs*. Its analysis uses *Rademacher averages*.

Joint work with *Eli Upfal* (Brown);

ACM KDD'16;

Journal under submission, http://bit.ly/abra-betweenness.

ABRA: Approximating Betweenness Centrality in Static and Dynamic Graphs with Rademacher Averages

Matteo Riondato Two Sigma Investments New York, NY, USA matteo@twosigma.com Eli Upfal Dept. of Computer Science – Brown University Providence, RU, USA eli@Ccs.brown.edu

ABPAZAX (ABRAXAS): Guastic word of mystic meaning ABSTRACT

We present ABPA, a varies of algorithms than compute and matrixes probabilistic algorouszetis, high-quarks, appendmations of the horizon association of all tools (or algorithms) and the strength of the strength of the strength these statistical barring theory. The theorem is Reducedors everyges and prescholaresistic, featurestatis, graph analysis. The results of our experimental evaluation and the strength of the statistical strength on the statistic strength of the statistical strength on the statistic strength of the strength of the statistical strength of the strength of the strength the statistical strength of the strength of the statistical strength of the strength of

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics] Graph Theory—Graph alperithese; H.2.8 [Database Management]: Database Applications—Data mining

Keywords

centrality; pseudo-dimension; sampling

1. INTRODUCTION

Control by the restore on a fundamental concepte in graph address of the theorem and the second second second second work is source that quantifies some metrics of importance of the mole/adjust in the network [20]. Referencesses: Contrakty (let) is a very popular contrakty measure that, informally, defines the importance of a node or adju 1 in the network any popularismal to the function of doubted public in the network that go theorging 1 (2), 13].

Thendow [9] presented as algorithm (denoted $\mathbb{B}A$) that compute the exact sc values for all nodes or edges in a graph G = (V, E) in time O(|V||E|) if the graph is unweighted, and time $O(|V||E| + |V|^{-1}\log |V|)$ if the graph

Remains to sub-digital a built capes of all to put of the set h generated harmons on a space of defaults for period for seque arout and a distributor put in the sequence of the sequence has positive weights. The cost of **BA** is excessive on modern networks with millions of nodes and tens of millions of edges. Moreover, having the scarst rev values may often nucbe medid, given the exploratory natures of the task, and a high-quality approximation of the values is usually sufficient, previded it comes with stringent gaussizes.

Today's networks are not only large, but also sponsite larges are added and reasond continuously. Ecopying the try values up-to-date after days intertions and removale is a disfloringing dark, and proposed algorithms [14, 16–18] have a wastronom complexity and memory requirements which a wastronom complexity and memory requirements which distantizing an adjug -maphy approximation up to-duck in meliandom and more resulted there is little added value in known leaded and more resulted there is little added value in known leaded and more resulted there is little added value in known leaded and more resulted that the approximation states of the states of the state of the state of the states of the states of the states of the little state of the states of the states

Convolutions: We been on developing algorithms to approximating the or of all varieus and algorithms in state and densate appende. Our combolitions are the fillewise, the foreign of the state of the s

experimentations with a digital large range to: a prevention of the second s

What are the important nodes in a graph?

Let G = (V, E) be a graph with |V| = n nodes and |E| = m edges.

QUESTION: Can we find the *most important nodes* in *G*? I.e. (almost), can we *rank the nodes by importance*?

PREREQUISITE: *Quantify* the importance of a node through a *numerical score*.

Definition (Centrality measure)

A function $f: V \to \mathbb{R}^+$ expressing the importance of a node. The *higher* is f(x), the *more important* is $x \in V$.

MOTIVATION: Find *relevant* webpages on the web, *influential* participants in a social network, *key* concepts in a E-R graph, ...

EXAMPLES: degree, PageRank, closeness, *betweenness*, . . . Each centrality measure quantifies importance in a very specific way.

What is betweenness centrality?

INTUITION: Assume that

- 1) every node wants to communicate with every node; and
- 2) communication progresses along Shortest Paths (SPs).

Then, the higher the no. of SPs that a node v belongs to, the more important v is.

Definition (Betweenness Centrality (BC))

For each node
$$x \in V$$
, the *betweeness* $b(x)$ of x is:

$$b(x) = \frac{1}{n(n-1)} \sum_{u \neq x \neq v \in V} \frac{\sigma_{uv}(x)}{\sigma_{uv}} \qquad \in [0,1]$$

- σ_{uv} : number of SPs from u to v, $u, v \in V$;
- $\sigma_{uv}(x)$: number of SPs from u to v that go through x.

Roughly: b(x): the weighted fraction of SPs that go through x, among all SPs in G.

May I give an example?

Brandes's Algorithm (BA) [Brandes 2001]

For each vertex $s \in V$:

- 1) Build the SP DAG from *s* via Dijkstra/BFS;
- 2) Traverse the SP DAG from the most distant node towards s, in *reverse order* of distance. During the walk, *appropriately* increment b(v) of each non-leaf node v traversed.

Brandes's Algorithm (BA) [Brandes 2001]

For each vertex $s \in V$:

- 1) Build the SP DAG from *s* via Dijkstra/BFS;
- 2) Traverse the SP DAG from the most distant node towards s, in *reverse order* of distance. During the walk, *appropriately* increment b(v) of each non-leaf node v traversed.

Source s: 1

Brandes's Algorithm (BA) [Brandes 2001]

For each vertex $s \in V$:

- 1) Build the SP DAG from *s* via Dijkstra/BFS;
- 2) Traverse the SP DAG from the most distant node towards s, in *reverse order* of distance. During the walk, *appropriately* increment b(v) of each non-leaf node v traversed.

Source s: 1

Brandes's Algorithm (BA) [Brandes 2001]

For each vertex $s \in V$:

- 1) Build the SP DAG from *s* via Dijkstra/BFS;
- 2) Traverse the SP DAG from the most distant node towards s, in *reverse order* of distance. During the walk, *appropriately* increment b(v) of each non-leaf node v traversed.

Source s: 1

Brandes's Algorithm (BA) [Brandes 2001]

For each vertex $s \in V$:

- 1) Build the SP DAG from *s* via Dijkstra/BFS;
- 2) Traverse the SP DAG from the most distant node towards s, in *reverse order* of distance. During the walk, *appropriately* increment b(v) of each non-leaf node v traversed.

Source s: 1

Brandes's Algorithm (BA) [Brandes 2001]

For each vertex $s \in V$:

- 1) Build the SP DAG from *s* via Dijkstra/BFS;
- 2) Traverse the SP DAG from the most distant node towards s, in *reverse order* of distance. During the walk, *appropriately* increment b(v) of each non-leaf node v traversed.

Source s: 1

Brandes's Algorithm (BA) [Brandes 2001]

For each vertex $s \in V$:

- 1) Build the SP DAG from *s* via Dijkstra/BFS;
- 2) Traverse the SP DAG from the most distant node towards s, in *reverse order* of distance. During the walk, *appropriately* increment b(v) of each non-leaf node v traversed.

Source s: 1

Brandes's Algorithm (BA) [Brandes 2001]

For each vertex $s \in V$:

- 1) Build the SP DAG from *s* via Dijkstra/BFS;
- 2) Traverse the SP DAG from the most distant node towards s, in *reverse order* of distance. During the walk, *appropriately* increment b(v) of each non-leaf node v traversed.

Source s: 1

Brandes's Algorithm (BA) [Brandes 2001]

For each vertex $s \in V$:

- 1) Build the SP DAG from *s* via Dijkstra/BFS;
- 2) Traverse the SP DAG from the most distant node towards s, in *reverse order* of distance. During the walk, *appropriately* increment b(v) of each non-leaf node v traversed.

Source s: 1

Brandes's Algorithm (BA) [Brandes 2001]

For each vertex $s \in V$:

- 1) Build the SP DAG from *s* via Dijkstra/BFS;
- Traverse the SP DAG from the most distant node towards s, in reverse order of distance. During the walk, appropriately increment b(v) of each non-leaf node v traversed.

Source s: 1

(update to b(v) not shown)

TIME COMPLEXITY: $O(nm + n^2 \log n)$ *n* Dijkstra's, plus *n* backward walks, taking at most *n* each

Too much even with just 10^4 nodes.

What kind of approximation are we looking for?

Let $\tilde{b}(x)$ denote a value that *approximates* b(x), $x \in V$.

Definition $((\varepsilon, \delta)$ -approximation)

Let $\varepsilon \in (0, 1)$, and $\delta \in (0, 1)$ be user-specified parameters;

An (ε, δ) -approximation is a set $\{\tilde{b}(x), x \in V\}$ of *n* values such that

 $\mathsf{Pr}(\exists x \in V \text{ s.t. } |\mathsf{b}(x) - \tilde{\mathsf{b}}(x)| > \varepsilon) \leq \delta$.

I.e., with prob. $\geq 1 - \delta$, for all $x \in V$, $\tilde{b}(x)$ is within ε of b(x).

An (ε, δ) -approximation offers *uniform probabilistic guarantees* over all the nodes.

Are there algorithms to compute (ε, δ) -approximations?

Yes, they use *random sampling*, but of different "objects":

- [Brandes and Pich 2007]: sampling of *source nodes for BA* uniformly at random;
- [R. and Kornaropoulos 2015]: sampling of *SPs* non-uniformly at random;

NOTE: they *obtain approximations by performing fewer computations, not* by running BA on a *smaller graph*.

Key question in sampling algorithms:

How many samples does the algorithm need to obtain a (ε, δ) -approximation?

ANSWER:

• [Brandes and Pich 2007]: $O\left(\frac{1}{\varepsilon^2}\left(\ln n + \ln \frac{1}{\delta}\right)\right)$ source nodes;

• [R. and Kornaropoulos 2015]: $O\left(\frac{1}{\varepsilon^2}\left(\log_2 D + \ln \frac{1}{\delta}\right)\right)$ SPs (*D*: diameter of *G*);

What's wrong with these algorithms?

[BRANDES AND PICH 2007]:

- the sample size does not depend on the edge structure of G, only on n;
- lots of work per sample (SSSP, i.e., full exploration of the graph).

[R. AND KORNAROPOULOS 2015]:

- the *sample size* is derived by considering the *worst-case graph* of diameter *D*;
- lots of *wasted work* per sample (s t SP computation, but a single SP is used);
- must compute an upper bound to the diameter before sampling can start.

Our algorithm, ABRA, solves these issues.

How does ABRA solve these issues?

ABRA computes an (ε, δ) -approximation using progressive random sampling.

ABRA in two lines (details later)

- ABRA immediately *starts sampling*, computing the approximation as it goes.
- At predefined intervals, ABRA checks a *stopping condition* to understand, *using the sample*, whether the current approximation has the desired quality.

The analysis of correctness uses *Rademacher averages* and *pseudodimension*.

Challenge

The stopping condition must be fast to check and satisfied at small sample sizes

Intuition from a Rademacher Average p.o.v.

 \mathcal{D} is the set of pairs of different nodes (u, v) in V:

 $\mathcal{D} = \{(u, v), (u, v) \in V \times V, u \neq v\}$

Sample from \mathcal{D} uniformly at random

 \mathcal{F} contains one function f_w for each $w \in V$. $f_w : \mathcal{D} \to [0,1]$:

$$f_{w}(u,v) = \frac{\sigma_{uv}(w)}{\sigma_{uv}}$$

ABRA keeps track of the set $\mathcal{V}_{\mathcal{S}}$ of vectors \mathbf{v}_{f_w} , $w \in V$, and uses it to compute bounds to the maximum deviations.

ABRA from 30,000 ft:

INPUT: G, ε , δ , sample schedule $(S_i)_{i\geq 1}$ OUTPUT: (ε, δ) -approximation

ABRA from 30,000 ft:

INPUT: G, ε, δ , sample schedule $(S_i)_{i \ge 1}$ OUTPUT: (ε, δ) -approximation $\mathcal{T} \leftarrow$ set of triples $(r_1 \in \mathbb{R}, r_2 \in \mathbb{R}, C \subseteq V))$, initially containing only (0, 0, V); $\tilde{b}(x) \leftarrow 0$, for all $x \in V$; $i \leftarrow 1$, $S_0 \leftarrow 0$

ABRA from 30,000 ft:

INPUT: G, ε, δ , sample schedule $(S_i)_{i \ge 1}$ OUTPUT: (ε, δ) -approximation $\mathcal{T} \leftarrow$ set of triples $(r_1 \in \mathbb{R}, r_2 \in \mathbb{R}, C \subseteq V))$, initially containing only (0, 0, V); $\tilde{b}(x) \leftarrow 0$, for all $x \in V$; $i \leftarrow 1$, $S_0 \leftarrow 0$ At iteration *i*: For $j \leftarrow 1$ to $S_i - S_{i-1}$:

ABRA from 30,000 ft:

INPUT: G, ε, δ , sample schedule $(S_i)_{i>1}$ OUTPUT: (ε, δ) -approximation $\mathcal{T} \leftarrow$ set of triples $(r_1 \in \mathbb{R}, r_2 \in \mathbb{R}, C \subseteq V)$, initially containing only (0, 0, V); $\tilde{b}(x) \leftarrow 0$, for all $x \in V$; $i \leftarrow 1$, $S_0 \leftarrow 0$ At iteration *i*: For $i \leftarrow 1$ to $S_i - S_{i-1}$: 1) Sample a pair (u, v) of nodes uniformly at random from $V \times V$; 2) Get the SP DAG from u to v (Dijkstra/BFS); 3) Increment $\tilde{b}(x)$ by $\sigma_{\mu\nu}(x)/\sigma_{\mu\nu}$ for all $x \in V$ internal to the SP DAG; 4) Update \mathcal{T} ; // stay tuned

ABRA from 30,000 ft:

INPUT: G, ε, δ , sample schedule $(S_i)_{i>1}$ OUTPUT: (ε, δ) -approximation $\mathcal{T} \leftarrow$ set of triples $(r_1 \in \mathbb{R}, r_2 \in \mathbb{R}, C \subseteq V)$, initially containing only (0, 0, V); $\tilde{b}(x) \leftarrow 0$, for all $x \in V$; $i \leftarrow 1$, $S_0 \leftarrow 0$ At iteration *i*: For $i \leftarrow 1$ to $S_i - S_{i-1}$: 1) Sample a pair (u, v) of nodes uniformly at random from $V \times V$; 2) Get the SP DAG from u to v (Dijkstra/BFS); 3) Increment $\tilde{b}(x)$ by $\sigma_{\mu\nu}(x)/\sigma_{\mu\nu}$ for all $x \in V$ internal to the SP DAG; 4) Update \mathcal{T} ; // stay tuned Check a stopping condition using \mathcal{T} ; // stay tuned

If the stopping condition is *satisfied, then output* $\{\tilde{b}(x)/S_i, x \in V\}$, else iterate;

- 1) Sample a pair (u, v) of nodes uniformly at random from $V \times V$;
- 2) Get the SP DAG from u to v (Dijkstra/BFS);
- 3) Increment $\tilde{b}(x)$ by $\sigma_{uv}(x)/\sigma_{uv}$ for all $x \in V$ internal to the SP DAG;

4) Update \mathcal{T} ;

Node v	$\tilde{b}(v)$	
1	1	
2	1/2	
3	1/2	
4	0	
5	1	
6	1/2	
7	1/2	
8	1/2	
9	0	

- 1) Sample a pair (u, v) of nodes uniformly at random from $V \times V$;
- 2) Get the SP DAG from u to v (Dijkstra/BFS);
- 3) Increment $\tilde{b}(x)$ by $\sigma_{uv}(x)/\sigma_{uv}$ for all $x \in V$ internal to the SP DAG;

4) Update \mathcal{T} ;

Sampled pair: (1,8)

Node v	$\tilde{b}(v)$	
1	1	
2	1/2	
3	1/2	
4	0	
5	1	
6	1/2	
7	1/2	
8	1/2	
9	0	

- 1) Sample a pair (u, v) of nodes uniformly at random from $V \times V$;
- 2) Get the SP DAG from u to v (Dijkstra/BFS);
- 3) Increment $\tilde{b}(x)$ by $\sigma_{uv}(x)/\sigma_{uv}$ for all $x \in V$ internal to the SP DAG;
- 4) Update \mathcal{T} ;

Sampled pair: (1,8) SPs: $\sigma_{1,8} = 3$

Node v	$\tilde{b}(v)$	$\sigma_{1,8}(v)/\sigma_{1,8}$				
1	1	0				
2	1/2	1/3				
3	1/2	2/3				
4	0	0				
5	1	1/3				
6	1/2	1/3				
7	1/2	1/3				
8	1/2	0				
9	0	0				

- 1) Sample a pair (u, v) of nodes uniformly at random from $V \times V$;
- 2) Get the SP DAG from u to v (Dijkstra/BFS);
- 3) Increment $\tilde{\mathbf{b}}(x)$ by $\sigma_{uv}(x)/\sigma_{uv}$ for all $x \in V$ internal to the SP DAG;
- 4) Update \mathcal{T} ;

Sampled pair: (1,8) SPs: $\sigma_{1,8} = 3$

Node v	b (v)	$\sigma_{1,8}(\mathbf{v})/\sigma_{1,8}$
1	1	0
2	5/6	1/3
3	7/6	2/3
4	0	0
5	5/6	1/3
6	5/6	1/3
7	5/6	1/3
8	1/2	0
9	0	0

- 1) Sample a pair (u, v) of nodes uniformly at random from $V \times V$;
- 2) Get the SP DAG from u to v (Dijkstra/BFS);
- 3) Increment $\tilde{\mathbf{b}}(x)$ by $\sigma_{uv}(x)/\sigma_{uv}$ for all $x \in V$ internal to the SP DAG;
- 4) Update \mathcal{T} ; // stay tuned

Sampled pair: (1,8) SPs: $\sigma_{1,8} = 3$

Node v	$\tilde{b}(v)$	$\sigma_{1,8}(\mathbf{v})/\sigma_{1,8}$
1	1	0
2	5/6	1/3
3	7/6	2/3
4	0	0
5	5/6	1/3
6	5/6	1/3
7	5/6	1/3
8	1/2	0
9	0	0

What is \mathcal{T} ?

Assume to observe ABRA after it has sampled k pairs of nodes: $(u_1, v_1), \ldots, (u_k, v_k)$.

For any
$$x \in V$$
, let $\mathbf{v}_x = \left(rac{\sigma_{u_1,v_1}(x)}{\sigma_{u_1v_1}}, \dots, rac{\sigma_{u_kv_k}(x)}{\sigma_{u_kv_k}}
ight)$;

Let $\mathcal{V}_k = \{\mathbf{v}_x, x \in V\}$. There may be distinct nodes x and y s.t. $\mathbf{v}_x = \mathbf{v}_y$; \mathcal{V}_k induces a *partitioning* of V into classes $C_{\mathbf{v}}$ indexed by the elements of \mathcal{V}_k .

 \mathcal{T} contains one and only one element $(\|\mathbf{v}\|_1, \|\mathbf{v}\|_2, C_{\mathbf{v}})$ for each class $C_{\mathbf{v}}$ in the partitioning. At the start, all nodes belong to one class, and $\mathcal{T} = \{(0, 0, V)\}$

As ABRA takes more samples, *the partitioning is refined*, and \mathcal{T} changes;

ABRA leverages properties of the refining process to *track the partitioning efficiently*. T is updated efficiently after each sample.

What is the stopping condition?

ABRA outputs the approximations $(\tilde{b}(x))_{x \in V}$ when the stopping condition is satisfied.

The stopping condition:

- 1 uses \mathcal{T} to obtain $r = \max_{\mathbf{v} \in \mathcal{V}_{\mathcal{S}}} \|\mathbf{v}\|$ and $|\mathcal{V}_{\mathcal{S}}|$;
- **2** then uses $r |\mathcal{V}_{\mathcal{S}}|$ in Massart's Lemma to compute an upper bound ω to $\mathcal{R}_{\mathcal{S}}(\mathcal{F})$;
- **3** then uses ω and δ to obtain a bound ξ to $\max_{x \in V} |\tilde{b}(x) b(x)|$.
- **4** and finally checks whether $\xi \leq \varepsilon$.

KEY THEOREM: The output is a (ε, δ) -approximation.

CAVEAT: Need union bound over all possible iterations, so at iteration *i* use $\delta' = \delta/2^i$

Will ABRA ever stop sampling?

Yes, it will.

Theorem

Let θ be the size of the largest Weakly Connected Component in G.

After having sampled

 $\frac{1}{\varepsilon^2} \left(\log_2 \theta + \ln(1/\delta) \right)$

pairs of nodes, then ABRA can stop: the output will be an (ε, δ) -approximation.

INTUITION:

 $\log_2 \theta$ is an upper bound to the pseudodimension of the problem.

(pseudodimension: *VC-dimension* for real-valued functions).

Can we do better?

The bound to the pseudodimension is *disappointing*: for a connected G, $\theta = \log_2 |V|$. We could get the same result with a simple union bound.

Can we do better?

The bound to the pseudodimension is *disappointing*: for a connected G, $\theta = \log_2 |V|$. We could get the same result with a simple union bound.

Conjecture

Let *G* be a graph and let κ be the maximum positive integer for which there exists a set $L = \{(u_1, v_1), \dots, (u_{\kappa}, v_{\ell})\}$ of ℓ distinct pairs of distinct vertices such that

$$\sum_{i=1}^{\kappa} \sigma_{u_i v_i} \ge \binom{\ell}{\lfloor \ell/2 \rfloor}$$

then the pseudodimension is at most κ .

E.g., if there is at most 1 SP between each pair of nodes (road networks), then pseudodimension is at most 3.

Is the conjecture tight?

The conjecture is tight at least up to $\kappa = 4$. This graph satisfies the conjecture for $\kappa = 4$ and has pseudodimension d = 4:

How does ABRA perform in practice?

Great!

IMPLEMENTATION: C++, extension of *NetworKit*.

DATASETS: from *SNAP* (Soc-Epinions1, P2p-Gnutella, Email-Enron, Cit-HepPh).

ACCURACY: Maximum error was *always* < ε , Avg. and min. errors were $\ll \varepsilon$.

FINAL SAMPLE SIZE:

 $O(25 \cdot 10^4)$ for $\varepsilon = 0.01$, $O(10^3)$ for $\varepsilon = 0.03$ (varies across graphs); Smaller than RK ($\approx 2x$ to 4x fewer samples).

RUNTIME:

Faster than BA ($\approx 5x$ for $\varepsilon = 0.01$, $\approx 40x$ for $\varepsilon = 0.03$); Faster than RK ($\approx 3x$ for $\varepsilon = 0.01$, $\approx 6x$ for $\varepsilon = 0.03$).

Did we do our homework?

This slide is close to unreadable on purpose.

			Spee w.r	dup .t.	Runtime Breakdown (%)				Absolute Error ($\times 10^5$)		(×10 ⁵)	
Graph	ε	Runtime (sec.)	ВА	RK	Sampling	Stop Cond.	Other	Sample Size	Reduction w.r.t. RK	max	avg	stddev
Soc-Epinions1 Directed V = 75, 879 E = 508, 837	$\begin{array}{c} 0.005\\ 0.010\\ 0.015\\ 0.020\\ 0.025\\ 0.030\\ \end{array}$	483.06 124.60 57.16 32.90 21.88 16.05	1.36 5.28 11.50 19.98 30.05 40.95	2.90 3.31 4.04 5.07 6.27 7.52	99.983 99.956 99.927 99.895 99.862 99.827	0.014 0.035 0.054 0.074 0.092 0.111	0.002 0.009 0.018 0.031 0.046 0.062	$110,705 \\ 28,601 \\ 13,114 \\ 7,614 \\ 5,034 \\ 3,668$	2.64 2.55 2.47 2.40 2.32 2.21	70.84 129.60 198.90 303.86 223.63 382.24	$0.35 \\ 0.69 \\ 0.97 \\ 1.22 \\ 1.41 \\ 1.58$	1.14 2.22 3.17 4.31 5.24 6.37
P2p-Gnutella31 Directed V = 62,586 E = 147,892	0.005 0.010 0.015 0.020 0.025 0.030	100.0626.0511.917.114.843.41	$1.78 \\ 6.85 \\ 14.98 \\ 25.09 \\ 36.85 \\ 52.38$	4.27 4.13 4.03 3.87 3.62 3.66	99.949 99.861 99.772 99.688 99.607 99.495	0.041 0.103 0.154 0.191 0.220 0.262	0.010 0.036 0.074 0.121 0.174 0.243	81,507 21,315 9,975 5,840 3,905 2,810	4.07 3.90 3.70 3.55 3.40 3.28	38.43 65.76 109.10 130.33 171.93 236.36	0.58 1.15 1.63 2.15 2.52 2.86	1.60 3.13 4.51 6.12 7.43 8.70
Email-Enron Undirected V = 36,682 E = 183,831	0.010 0.015 0.020 0.025 0.030	202.43 91.36 53.50 31.99 24.06	1.18 2.63 4.48 7.50 9.97	1.10 1.09 1.05 1.11 1.03	99.984 99.970 99.955 99.932 99.918	0.013 0.024 0.035 0.052 0.061	0.003 0.006 0.010 0.016 0.021	66,882 30,236 17,676 10,589 7,923	1.09 1.07 1.03 1.10 1.02	145.51 253.06 290.30 548.22 477.32	0.48 0.71 0.93 1.21 1.38	2.46 3.62 4.83 6.48 7.34
Cit-HepPh Undirected V = 34,546 E = 421,578	0.010 0.015 0.020 0.025 0.030	215.98 98.27 58.38 37.79 27.13	2.36 5.19 8.74 13.50 18.80	2.21 2.16 2.05 2.02 1.95	99.966 99.938 99.914 99.891 99.869	0.030 0.054 0.073 0.091 0.108	0.004 0.008 0.013 0.018 0.023	32,469 14,747 8,760 5,672 4,076	2.25 2.20 2.08 2.06 1.99	129.08 226.18 246.14 289.21 359.45	1.72 2.49 3.17 3.89 4.45	3.40 5.00 6.39 7.97 9.53 42 / 47

Did we really do our homework?

This slide is close to unreadable on purpose.

(a) P2p-Gnutella

(b) Email-Enron

(c) Soc-Epinions1

(d) Cit-HepPh

To sum up...

ABRA is an algorithm to estimate betweenness centrality of all nodes

It uses progressive random sampling of pairs of nodes, plus $\mathsf{BFS}/\mathsf{Dijkstra}$ for each pair

It keeps track of $\mathcal{V}_{\mathcal{S}}$ as it samples

The analysis relies on Rademacher averages

It is very fast, showing the practicality of Rademacher averages

IV. Conclusions

To sum up...

Rademacher averages: a very powerful tool for analyzing sampling algorithms

They are efficient in practice, no longer only of theoretical interest

We also used them for other key tasks in data analysis, e.g., frequent pattern mining

They can also be used to control the FWER in multiple hypotheses statistical testing

Rademacher chaos: promising extension to limited dependence sampling case

Online Rademacher avg.: extensions to non-stationary time-series analysis

Thank you!

Matteo Riondato

@teorionda

http://matteo.rionda.to

This document is being distributed for informational and educational purposes only and is not an offer to sell or the solicitation of an offer to buy any securities or other instruments. The information contained herein is not intended to provide, and should not be relied upon for investment advice. The views expressed herein are not necessarily the views of Two Sigma Investments, LP or any of its affiliates (collectively, "Two Sigma"). Such views reflect significant assumptions and subjective of the author(s) of the document and are subject to change without notice. The document may employ data derived from third-party sources. No representation is made as to the accuracy of such information and the use of such information in no way implies an endorsement of the source of such information or its validity.

The copyrights and/or trademarks in some of the images, logos or other material used herein may be owned by entities other than Two Sigma. If so, such copyrights and/or trademarks are most likely owned by the entity that created the material and are used purely for identification and comment as fair use under international copyright and/or trademark laws. Use of such image, copyright or trademark does not imply any association with such organization (or endorsement of such organization) by Two Sigma, nor vice versa.