
The Open Community Runtime:
A Runtime System for Extreme Scale Computing

Timothy G. Mattson⇤, Romain Cledat⇤, Vincent Cavé⇤, Vivek Sarkar†, Zoran Budimlić†,
Sanjay Chatterjee†, Josh Fryman⇤, Ivan Ganev⇤, Robin Knauerhase⇤, Min Lee⇤,

Benoı̂t Meister‡, Brian Nickerson⇤, Nick Pepperling⇤, Bala Seshasayee⇤, Sagnak Tasirlar¶,
Justin Teller§, and Nick Vrvilo†

⇤Intel Corporation, Hillsboro OR, USA †Rice University, Houston TX, USA
‡Reservoir Labs, New York NY, USA §Facebook, Menlo Park CA, USA

¶Two Sigma Investments, LP

Abstract—The Open Community Runtime (OCR) is a new
runtime system designed to meet the needs of extreme-scale
computing. While there is growing support for the idea that
future execution models will be based on dynamic tasks, there is
little agreement on what else should be included. OCR minimally
adds events for synchronization and relocatable data-blocks for
data management to form a complete system that supports a
wide range of higher-level programming models. This paper
lays out the fundamental concepts behind OCR and compares
OCR performance to that from MPI for two simple benchmarks.
OCR has been developed within an open community model
with features supporting flexible algorithm expression weighed
against the expected realities of extreme-scale computing: power-
constrained execution, aggressive growth in the number of
compute resources, deepening memory hierarchies and a low
mean-time between failures.

I. INTRODUCTION

Programming models for high performance computing
evolve slowly. Researchers develop programming models by
the thousands, but very few are actually used. On rare oc-
casions, new programming models emerge from the research
community and become adopted by a wider community of
users. It may appear that this happens because programmers
are attracted to the productivity benefits or other features
of a new system. While productivity is indeed an important
factor in deciding between two systems which solve a similar
problem, the adoption of a new system is primarily driven by
an external change. MPI [15] emerged because the “attack of
the killer micros” made distributed memory MIMD computers
almost ubiquitous in supercomputing. OpenMP [13] emerged
because SMP systems became common with the emergence of
commercial off the shelf chip-sets that supported multi-socket
systems. Multi-core chips came later and further solidified the
importance of OpenMP. Programmable rendering pipelines in
GPUs created the GPGPU movement and put CUDA [11] on
the map.

The pattern is clear: in each case it was not the features of a
programming model that drove its adoption by the applications
community but rather the need to support a changing hardware
reality that turned research parallel programming systems into
new mainstream parallel programming models.

With this perspective in mind, consider the state of exascale
computing. The details vary depending on which vendor is

making the pitch, but the high-level features of the hardware
for these extreme scale systems are clear; they will most likely
be characterized by:

• Power optimized designs based on large numbers of low
power cores. Systems with tens or even hundreds of
millions of cores would not be surprising.

• The cores making up the system will be packaged into
processors and organized into deep hierarchies. Instruc-
tion sets are likely to vary across the system. Even if the
cores all utilize the same instruction set, the variation in
frequency between cores will basically make the system
one in which programmers need to manage heterogeneity.

• The memory hierarchy will deepen significantly and
contain multiple types of memory, not just DRAM with
a cache hierarchy. There will be persistent memory, in
package DRAM, scratchpads, node level DRAM, and ad-
ditional memory capabilities exposed across the system.

• With so many components, the mean time between failure
of some component in the system will be short relative to
the runtime of a computation. With such a large, spatially
distributed system, a checkpoint stored into a central store
will not be possible. Hence, a computation must be able
to recover and proceed should a component of the system
fail.

These last three points suggest that runtime systems for
extreme scale computers will need to decouple computational
work and data from the system resources used to support them.
The work in a computation can be decomposed into a large
number of asynchronous tasks that can migrate around faults
and distribute themselves about the processing elements of
a system to effectively balance the load. Likewise, to support
task migration and resilience models, the data within a compu-
tation should be represented as relocatable objects virtualized
from the supporting memory. A common instantiation of these
concepts can be found in Asynchronous Many Task (AMT)
models.

We submit that the changes suggested by exascale comput-
ers are significant enough to drive application developers to
consider alternatives to the dominant programming models in
use today (OpenMP and MPI). The transition from terascale to

petascale was accomplished without changing the underlying
programming models. With the shift to exascale computers,
however, it is likely that programmers will have no choice but
to adopt new programming models based on AMT runtime
systems.

The Open Community Runtime, or OCR, is a new AMT
system designed to address the challenges of exascale systems.
In this short paper, we introduce OCR, describe the motivation
behind it, and present results with a few simple benchmarks.
We do not have space, however, to present all the features of
the runtime or describe how our reference implementation of
OCR is implemented.

II. THE OPEN COMMUNITY RUNTIME

The Open Community Runtime (OCR) is an AMT runtime
system for extreme scale computers. It is a community driven
project defined by a formal specification [9] providing a
common foundation for independent implementations.

OCR is a runtime system. OCR’s low-level API suggests
a natural programming model, but most application program-
mers will prefer higher-level programming models that run on
top of OCR. RStream [10], [19], CnC [2], and Habanero-C++
already target OCR and we are currently working on porting
Legion [1] and OmpSS [5] to OCR. These porting efforts
validate our hypothesis about the utility of AMT systems and
help us refine the OCR API to more effectively support a wide
range of high-level programming models.

An OCR program defines a computation as a collection of
asynchronously executing tasks operating on relocatable data-
blocks. Events coordinate the execution of OCR tasks; hence
an OCR task is called an Event Driven Task or EDT. Logically
an OCR computation is a Directed Acyclic Graph (DAG)
where the nodes are OCR objects (data-blocks, events or tasks)
and the edges are dependences between objects. When the
dependences of an EDT are met, the EDT is guaranteed to
run at some point in the future.

All persistent state in an OCR program is defined through
data-blocks. In OCR, EDTs are transient objects; they run
without blocking and when complete, are destroyed by the
runtime system. Hence an EDT appears to other EDTs as
a transaction. This allows the state of a computation to be
defined by a log of which EDTs have executed on which data-
blocks. This will serve as a foundation for a formal resilience
model to appear in a future version of OCR.

A. OCR objects
As previously stated, an OCR program is a DAG of OCR

objects, each of which can be referenced through a globally
unique identifier (GUID). The edges in the DAG are explic-
itly created dependences between objects. Dependences are
defined in terms of slots on an object with input or pre-slots
and output or post-slots. A dependence is a link between the
post-slot of one object and a pre-slot of a different object. This
defines a producer-consumer relationship between objects.

A post-slot can be connected to multiple pre-slots but a pre-
slot can only be connected to one post-slot; thereby defining

a well defined “flow” for data-blocks along dependence links.
A pre-slot is said to be satisfied if it is connected to a post-
slot and if that post-slot is also satisfied. In other words, the
satisfaction of a post-slot will trigger the satisfaction of all
pre-slots connected to it. The exact significance of pre- and
post- slots is different for each object and is explained in the
following sections.

1) Event Driven Tasks (EDTs): An EDT is the basic unit
of computation in OCR. EDTs encapsulate both the user code
(the “useful” application computation) as well as the code to
setup the application’s DAG. An EDT can have 0 to n pre-slots
and a single post-slot associated with an event. The satisfaction
of an EDT’s post-slot indicates its completion.

An EDT’s pre-slots determine both the lower-bound for
when it can execute and what, in terms of data-blocks, it
has access to. An EDT will only become runnable once all
of its pre-slots have been satisfied and, when it does run,
can only access data-blocks that have either been passed in
through its pre-slots or that it creates itself during the course
of its execution. There are several “rules” for an EDT to be
compliant with the OCR programming model:

1) An EDT must be re-entrant. This precludes the use of
static or global data.

2) An EDT may only read or write to data-blocks it has
access to.

3) An EDT cannot perform any synchronization operation
that might cause it to block (e.g. a lock) outside of the
synchronization operations provided by the OCR API.

The importance of these rules will become clear when we
discuss the OCR execution model in Section II-B.

2) Data-blocks (DBs): In OCR, a data-block is a relocat-
able block of memory. A data-block has no pre-slot and a
single post-slot which is always in a satisfied state. Hence,
once created data is always considered to be available. Data-
blocks cannot be used until they are acquired which, in effect,
translates the GUID into a pointer usable by the EDT. In OCR,
this can only happen when an EDT starts its execution or at
the creation of the data-block. Note that the “availability” of
a data-block does not mean “all EDTs can use it at any time”.
Since the runtime is responsible for scheduling EDTs, it can
place data-blocks and schedule EDTs appropriately to make
sure that the data-block is readable by the EDT when acquired.
When a data-block is no longer being used, it should be
released. This happens either explicitly through an API call or
implicitly at the end of the acquiring EDT. This acquire/release
semantic is key to the OCR memory model (see Section II-D).

Data-blocks are the only way for EDTs to share data. Hence,
the state of a computation is defined by the collection of
released data-blocks and a log of EDT execution; a fact we
will exploit in future resilience models. Additional details for
how EDTs communicate data are detailed in Section II-B.

3) Events: Events are OCR’s synchronization mechanism.
An event has at least one pre-slot and exactly one post-slot.
An event can be understood in terms of two functions.

1) Trigger function: A function that determines when the
post-slot of the event becomes satisfied based on the state

of its pre-slots.
2) Output function: a function that determines the data, if

any, that will be passed along the post-slot of the event
once it becomes satisfied.

The simplest form of event has one pre-slot, a trigger function
that satisfies the event’s post-slot upon satisfaction of the
event’s single pre-slot, and an output function that transfers
whatever came in on the event’s pre-slot. Other types of events
are defined in the specification but are beyond the scope of
this paper.

B. Execution model
The work of an OCR program is defined in terms of a

collection of tasks organized into a directed acyclic graph
(DAG) [16], [17], [20]. Task execution is controlled and
managed through events; a task can only execute once all of
its pre-slots, often connected to events, are satisfied.

All API functions described in this section are illustrated in
Section II-C.

1) Execution platform: An OCR program executes on an
abstract machine called the OCR platform which consists of:

• A collection of network connected nodes.
• Each node consists of one or more processing elements

each of which may have its own private memory. A node
may also contain memory regions that are shared by the
processing elements of the node.

• Workers that run on the processing elements to execute
EDTs.

• A globally accessible shared name space of OCR objects
each denoted by a globally unique ID (GUID).

OCR is designed to be portable and scalable, hence the
OCR platform places minimal constraints on the physical
hardware. In particular, OCR does not assume a globally
shared address space with a cache-coherent memory hierarchy.
It only requires a a shared globally unique name space.

The execution of an OCR program logically starts as a
single EDT called mainEDT() executing on a single processing
element. The DAG corresponding to the program is dynam-
ically constructed and executes until a call is made to one
of the termination APIs; either ocrShutdown() or ocrAbort().
Any EDT may call a termination API. The termination of the
program, however, will only be precise if the calling EDT
is the last running or runnable EDT in the program. OCR
does not attempt to detect program termination, so an OCR
program will hang indefinitely if one of the termination APIs
is not called.

2) Dependences: OCR objects are linked together using
dependences. There are two main mechanisms for defining
dependences: a) the ocrAddDependence() API call which
simply adds a link between the post-slot of the source object
and the designated pre-slot of the destination object, and b)
the ocrEventSatisfy() API call which satisfies the pre-slot of
an event with the specified data-block.

3) EDT execution states: To understand the execution
model of OCR, consider the discrete states and transitions of
an EDT as defined in Figure 1. When an EDT is created, it

is assigned a GUID and is said to be Available. An Available
EDT knows the code that it will execute as well as the number
of pre-slots that it has. The GUID of an Available EDT is also
valid to be used in calls such as ocrAddDependence. The EDT
is not, however, fully defined in terms of its place in the DAG
until all of the EDT’s pre-slots are “connected” at which point
it becomes Resolved. Note that the transition from Available
to Resolved is not called out as a named transition because it
is not generally possible for the system to set a distinct time-
stamp corresponding to when the transition occurred. In this
case, the transition is un-named because dependences may be
defined dynamically up until the EDT Launch transition. At
this point the EDT is Runnable.

Once the EDT is runnable, it will execute at some point
during the normal execution of the OCR program. Prior to
starting execution, all data-blocks passed on the pre-slots of
the EDT will be acquired and the EDT becomes Ready. The
Ready EDT will be scheduled by the OCR scheduler and Start
executing to become a Running EDT.

Once the EDT transitions to the Running state, it is guar-
anteed to eventually Finish and transition to the End state. At
some later point, the EDT will release all acquired data-blocks
not explicitly released by the user and enter the Released state.
At this point, all changes made by the EDT to any of its
acquired data-blocks will be available for use by other OCR
objects (see Section II-D). Later, the EDT will Trigger the
event associated with it thereby becoming a Triggered EDT
and potentially satisfying events waiting on its completion. At
some later point, the system will Clean-up the resources used
by the EDT (potentially recycling its GUID) and the EDT is
destroyed.

C. Illustrative example
In this section, we describe some of the functions from

the OCR API and how they are used to implement a “sim-
plistic” Fibonacci example. The basic Fibonacci computation
computes F (n) using the recurrsion 8n � 2 : F (n) =
F (n� 1) + F (n� 2) with initial values F (0) = F (1) = 1.
In this implementation, we use three EDTs to compute F (n):
one to compute F (n� 1), one to compute F (n� 2) and one
to perform the summation.

Due to space limitations, we only cover the main points
in this section. The full program is available at [6]. This
section describes the low-level OCR API and the low-level
programming model naturally exposed by OCR.

a) Creating tasks: A task is represented by an EDT in
OCR. An EDT is submitted for execution as follows:

typedef ocrGuid_t (*ocrEdt_t)(u32 paramc,
u64* paramv, u32 depc,
ocrEdtDep_t depv[])

It takes paramc parameters (paramv) known at creation
time and depc input dependences, some of which may be
associated with data-blocks while others may be pure control
dependences. It returns the identifier (a GUID) of a data-block
that is eventually passed to the successors of the EDT.

Available

Resolved

Runnable

Running

End

Ready

Launch

Triggered

Destroyed

Start

Create

Clean up

Finish

GUID usable by OCR API

Dependences defined

All pre-slots satisfied.

Data blocks acquired

EDT function executing

EDT function return statement

Post slot satisfied, event triggered

Resources deleted. GUID not usable by OCR API

Transitions

States

Observable
Execution
features

Released Data Blocks Released
Trigger

Fig. 1. Observable execution features

Creating an EDT is a two-step process: a) a template is
created to describe the EDT type and define the function that
the EDT will execute (funcPtr), then b) an instance of the
EDT from the indicated template (templateGuid) is created
for each task. The OCR functions involved are:

u8 ocrEdtTemplateCreate(ocrGuid_t *out,
ocrEdt_t funcPtr, u32 paramc,
u32 depc);

u8 ocrEdtCreate(ocrGuid_t *edtGuid,
ocrGuid_t templateGuid,
u32 paramc, u32 depc,
ocrGuid_t *depv,
u16 properties, ocrHint_t *hint,
ocrGuid_t *outputEvent);

Like all OCR APIs, an error code is returned and the output
values (such as the GUID for the created objects) are returned
through the first pointer parameter.

In the Fibonacci example, mainEdt, which is the starting
point of the computation, will create an EDT that will execute
at the end of the program and print out the result as well as an
EDT to compute F (n). That EDT will, in turn, create three
other EDTs: one to compute F (n� 1) and F (n� 2) and one
to perform the sum.

b) Creating data-blocks: Creating a data-block is very
similar to allocating a chunk of memory; the following API
creates a block of memory of length len and returns a pointer
(addr) and identifier (out):

u8 ocrDbCreate(ocrGuid_t *out, void** addr,
u64 len, u16 flags, ocrHint_t *hint,
ocrInDbAllocator_t alloc)

In the Fibonacci example, a data-block is created for each
input value as well as the resulting output value.

c) Creating the task-graph: Events are OCR’s mecha-
nism for synchronizing EDTs. Events are created using the
following API:

u8 ocrEventCreate(ocrGuid_t *evtGuid,
ocrEventTypes_t type, u16 properties)

In our example, we create events to:

• Link the completion of the computation of F (n� 1) to
the EDT that performs the summation.

• Link the completion of the computation of (n� 2) to the
EDT that performs the summation.

• Link the summation EDT to the consumer of that value
(typically F (n+ 1)).

These dependences are added using the following function
call:

u8 ocrAddDependence(ocrGuid_t source,
ocrGuid_t destination, u32 slot,
u16 properties)

d) Exchanging data: To exchange data between EDTs,
an EDT must satisfy the event on its post-slot and associate
that event with the indicated data-block:

u8 ocrEventSatisfy(ocrGuid_t event,
ocrGuid_t db)

This function satisfies an event (event) and possibly triggers
another EDT while passing data (db) along its dependence
vector.

D. Memory Model
1) Definitions: To define the memory model for OCR, we

define two relations:
• Sequenced-before is the relation between two ordered

operations in an EDT as defined by the C programming
language. This is commonly referred to as “program
order”

• Synchronized-with is the relation between two points in
an OCR program. The only synchronized-with relation
in OCR is obtained through the use of events: the
satisfaction of a pre-slot of an event may synchronize
with the triggering and satisfaction of its post-slot. For
simple events, this means that the ocrEventSatisfy() call
on an event X synchronizes with the satisfaction of the
pre-slots of any object (EDT or event) connected to the
post-slot of X .

These two relations allow us to define a happens-before
relationship: if A is sequenced before B in EDT1 and C is
sequenced before D in EDT2 and B is synchronized with C

then A happens before D.
2) Acquire/release model: OCR provides a relatively sim-

ple memory model: before an EDT can read or write a data-
block, it must first acquire the data-block. This is not an
exclusive relationship by which we mean it is possible for
multiple EDTs to acquire the same data-block at the same
time. When an EDT has finished with a data-block and it is
ready to expose any modifications to the data-block to other
EDTs, it must release that data-block.

To precisely define the happens-before relationships, the
runtime and the user must collaborate. The OCR runtime
ensures the following property:

When an EDT releases a data-block D, either explic-
itly or implicitly when the EDT ends, all loads and
stores to that data-block complete before the data-
block is released and the release appears to complete
before the release call returns. Note that this does
not mean that the release necessarily fully completes
before the call returns (as this could be a long latency
operation) but rather that any other OCR calls will
only execute on a state that reflects that the release
has completed.

The user must adhere to the following rule:
Before an EDT calls a function to satisfy an event,
any data-block potentially exposed to other EDTs by
that event satisfaction must be released prior to the
event satisfaction. All writes to the data-blocks must
also be sequenced before the release API call.

With these two properties, the user can be certain that any EDT
B that happens after an EDT A will see the modifications that
A made to a data-block D if D is available to B.

3) Data races: The OCR memory model described above
defines the behavior for EDTs that have a clear happens-before
relation. OCR, however, lets two or more EDTs write to a
single data-block at the same time (or, more precisely, the
two EDTs can issue writes in an unordered manner). This

capability can lead to data races if conflicting accesses are
performed on the same byte/word of the shared data block.
Allowing data races in an OCR program is not an oversight
but a deliberate decision to allow OCR to scale better on a
wider range of parallel computers and not overly constrain
hardware OCR programs run on. The rules that OCR uses
to handle writes to a single data-block by multiple EDTs are
straightforward and can be found in the OCR specification[9]
in Section 1.5.2.

III. EXPERIMENTAL RESULTS

We are aware of three independent implementations of
OCR; OCR-Vx [4] from the University of Vienna, a recent
implementation from the Pacific Northwest national labora-
tory, and our own XSOCR system. We used XSOCR for this
study.

XSOCR was developed as part of the DoE’s XStack
project [12]. It targets a single shared-memory x86 node,
clusters of x86 nodes using either MPI or Gasnet, and the
FSIM simulator of a “straw-man” exascale computer. The goal
of XSOCR was to explore features of OCR and to experiment
with different implementation strategies; it was not optimized
for any particular platform.

Details about XSOCR and its design are beyond the scope of
this short paper. Our goal here is to demonstrate that working
versions of OCR are available. A full analysis of performance
results will be presented in a future paper.

To study the performance of OCR and compare to MPI, we
considered two simple benchmarks: Stencil-2D and HPCG.
Stencil-2D is a simple two dimensional, explicit stencil code.
HPCG is the well known High Performance Conjugate Gra-
dient Benchmark.

For the OCR version of the benchmarks we used a straight-
forward SPMD approach. For both benchmarks the domains
are decomposed in data-blocks with one EDT per sub-domain
responsible for an iteration of the computation. The halo
exchanges are done by satisfying neighbors’ events with data-
blocks holding border values. Events are used as control and
data dependences to schedule EDTs for the next iteration of a
sub-domain.

All results reported in this paper were produced on Edison; a
Cray XC30 computer at NERSC. The nodes in Edison consist
of two Intel R� Xeon R� E5-2695 Processors (Ivy Bridge) with
64 Gbytes of memory. Each processor has 12 cores for a total
of 24 physical cores per node. The nodes are connected by a
Cray Aries Dragonfly network.

We used OCR v1.1 and Intel MPI 5.2. OCR benchmarks
were run as one process per cluster node with as many
worker threads as cores whereas MPI benchmarks were run
as one process per core. Note that OCR dedicates one worker
to manage communications so there is effectively one less
computation worker. The stencil-2D benchmark uses all 24
cores of a cluster node and weak scaling is performed from 1
to 1024 nodes (23 to 23552 computation workers). The initial
input size is an 8640x8640 elements grid (1.1 GB).

0%

20%

40%

60%

80%

100%

120%

1 4 16 64 256 1,024

Pe
rfo

rm
an

ce
	o
f	t
he

	M
PI
	b
as
el
in
e

#	Cluster	Nodes

2D	Stencil	(24	cores/node)
HPCG		(9	cores/node)

Fig. 2. Stencil-2D and HPCG performance for OCR reported as a percentage of the performance of the corresponding programs implemented in MPI. All
runs were on the Edison system at NERSC. On one node, Stencil-2D ran at 42 GFlops for MPI and 32 GFLOPS for OCR. On 1024 nodes, Stencil-2D ran
at 4 PFLOPS with MPI and 1.3 PFLOPS with OCR.

The HPCG benchmark uses 9 cores out of the 24 cores
of a cluster node because of memory bandwidth saturation.
Weak scaling is performed from 1 to 512 cluster nodes (8 to
4096 computation workers). The initial input size is 64x64x64
where each worker owns a 2x2x2 chunk. Every time resources
double, the next dimension size is doubled starting from the
first.

Figure 2 shows weak scaling results. The OCR implementa-
tion of Stencil-2D achieves about 80% of the performance of
the reference MPI implementation from 1 to 64 nodes, which,
for a relatively unoptimized runtime (when compared to the
years of work that have gone into optimizing MPI runtimes),
is very promising. A modest performance decline from 64 to
256 nodes (75% to 63%), and a sharper decline on to 33%.

The OCR implementation of HPCG shows a 14% improve-
ment on a single node with respect to MPI. This is due to
the fact OCR operates as a single process with 8 computation
workers whereas MPI is ran as 8 individual processes. For
distributed runs of HPCG, the OCR implementation achieves
80% of the MPI performances up to 4 nodes and degrades as
node count increases to 20% for 512 nodes. The reason for the
poor scaling of the OCR program is the excessive overhead
in the OCR reduction library.

IV. RELATED WORK

The design of OCR was influenced by the codelet [21]
execution model at University of Delaware, and the Habanero
execution model at Rice University, which in turn was influ-
enced by early work on X10 [3] at IBM. All of these projects
built on the idea of lightweight asynchronous tasks popularized
by the MIT Cilk [14] project. The Habanero project introduced
data-driven tasks (DDTs) and data-driven futures (DDFs),
which formed the conceptual basis for EDTs and events/data-
blocks in OCR. A major motivation for Habanero DDTs and
OCR EDTs was to expand the scope of asynchronous task
parallelism beyond manycore processors to also encompass

heterogeneous accelerator-based parallelism and distributed-
memory parallelism, both of which are not addressed by fork-
join task parallel models such as Cilk. Further, the implemen-
tation of a scalable work-stealing task scheduler with the help-
first scheduling policy in Habanero-C directly led to the initial
implementations of task scheduling in OCR.

HPX [7] is another task-based runtime and programming
model aimed at future ExaScale systems. HPX implements
an active global address space, where globally-addressable
objects can be tracked by a unique global ID as they are
migrated throughout the system.

Charm++ [8] takes an object-oriented approach to building
ExaScale software. Charm++ programs are decomposed into
distributed objects, called chars, which are distributed through-
out a system by the runtime. Messages are passed throughout
the system via method calls on remote char objects.

Realm [18] is a fully asynchronous, event-based runtime
for task-based computations. All runtime actions in Realm
are non-blocking, building on a lightweight event mechanism
for dependence management. Realm implements a concept of
physical regions for shared global data, which provides type
information for blocks of data that may be migrated to remote
locations by the runtime. The additional type information pro-
vided for physical regions allows Realm to combine compute
operations, such as reductions, with data movement within the
runtime.

V. CONCLUSION

OCR is a new runtime system designed to address the
challenges of extreme-scale computing. The chief contribu-
tions of this paper were to introduce OCR, its execution
and memory models, and to provide some early performance
data. In particular, we set out to show how the fundamental
concepts in OCR (tasks, events, and data-blocks) provide the
virtualization needed to support the resilience and the dynamic
load balancing required by future exascale systems.

ACKNOWLEDGEMENTS AND DISCLAIMERS

This material is based upon work supported by the De-
partment of Energy [Office of Science] under Award Number
DE-SC0008717.

This research used resources of the National Energy Re-
search Scientific Computing Center, a DOE Office of Science
User Facility supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

This content was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not nec-
essarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

REFERENCES

[1] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing
locality and independence with logical regions. In Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’12, pages 66:1–66:11, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press.

[2] Z. Budimlic, M. Burke, V. Cave, K. Knobe, G. Lowney, R. Newton,
J. Palsberg, D. Peixotto, V. Sarkar, F. Schlimbach, and S. Tasirlar.
Concurrent collections. Scientific Programming, 18(3):203 – 217, 2010.

[3] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-oriented
approach to non-uniform cluster computing. In Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA ’05, pages 519–538,
New York, NY, USA, 2005. ACM.

[4] J. Dokulil, M. Sandrieser, and S. Benkner. Ocr-vx - an alternative
implementation of the open community runtime. In International
Workshop on Runtime Systems for Extreme Scale Programming Models
and Architectures, in conjunction with SC15. Austin, Texas, November
2015, November 2015.

[5] A. Duran, E. Ayguade, R. Badia, J. Labarta, L. Martinell, X. Martorell,
and J. Planas. Ompss: a proposal for programming heterogeneous multi-
core architectures. Parallel Processing Letters, 21(2):173 – 193, 2011.

[6] Intel Corporation. Fibonacci code in OCR. https://goo.gl/9Ojcb8.
[7] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey. Hpx: A

task based programming model in a global address space. In Proceedings
of the 8th International Conference on Partitioned Global Address Space
Programming Models, PGAS ’14, pages 6:1–6:11, New York, NY, USA,
2014. ACM.

[8] L. V. Kale and S. Krishnan. Charm++: A portable concurrent object
oriented system based on c++. In Proceedings of the Eighth Annual
Conference on Object-oriented Programming Systems, Languages, and
Applications, OOPSLA ’93, pages 91–108, New York, NY, USA, 1993.
ACM.

[9] T. Mattson, R. Cledat, Z. Budimlić, V. Cave, S. Chatterjee, B. Se-
shasayee, R. van der Wijngaart, and V. Sarkar. Ocr, the open com-
munity runtime interface. Technical report, Intel Corporation and Rice
University, 2015. OCR Specification 1.0.1.

[10] B. Meister, N. Vasilache, D. Wohlford, M. M. Baskaran, A. Leung, and
R. Lethin. R-stream compiler. In D. A. Padua, editor, Encyclopedia of
Parallel Computing, pages 1756–1765. Springer, 2011.

[11] Nvidia. NVidia CUDA Programming Guide version 7.5.
http://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf,
2015.

[12] OCR Core Team. XStack OCR Wiki. https://xstack.exascale-
tech.com/wiki.

[13] OpenMP Application Program Interface, version 3.0, May 2008.
http://www.openmp.org/mp-documents/spec30.pdf.

[14] K. H. Randall. Cilk: Efficient Multithreaded Computing. PhD thesis,
Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, May 1998.

[15] A. Skjellum, E. Lusk, and W. Gropp. Using MPI: Portable Parallel
Programming with the Message Passing Iinterface. MIT Press, 1999.

[16] S. Taşırlar and V. Sarkar. Data-Driven Tasks and their Implementation.
In ICPP’11: Proceedings of the International Conference on Parallel
Processing, Sep 2011.

[17] S. Tasirlar. Scheduling Macro-Dataflow Programs on Task-Parallel
Runtime Systems, Apr 2011.

[18] S. Treichler, M. Bauer, and A. Aiken. Realm: An event-based low-level
runtime for distributed memory architectures. In Proceedings of the 23rd
International Conference on Parallel Architectures and Compilation,
PACT ’14, pages 263–276, New York, NY, USA, 2014. ACM.

[19] N. Vasilache, M. M. Baskaran, T. Henretty, B. Meister, H. Langston,
S. Tavarageri, and R. Lethin. A tale of three runtimes. CoRR,
abs/1409.1914, 2014.

[20] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao. Using
a ”codelet” program execution model for exascale machines: Position
paper. In Proceedings of the 1st International Workshop on Adaptive
Self-Tuning Computing Systems for the Exaflop Era, EXADAPT ’11,
pages 64–69, New York, NY, USA, 2011. ACM.

[21] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao. Using
a ”codelet” program execution model for exascale machines: Position
paper. In Proceedings of the 1st International Workshop on Adaptive
Self-Tuning Computing Systems for the Exaflop Era, EXADAPT ’11,
pages 64–69, New York, NY, USA, 2011. ACM.

This document is being distributed for informational and educational purposes only and is not an offer to sell or the solicitation of an offer to buy

any securities or other instruments. The information contained herein is not intended to provide, and should not be relied upon for investment

advice. The views expressed herein are not necessarily the views of Two Sigma Investments, LP or any of its affiliates (collectively, “Two Sigma”).

Such views reflect significant assumptions and subjective of the author(s) of the document and are subject to change without notice. The

document may employ data derived from third-party sources. No representation is made as to the accuracy of such information and the use of

such information in no way implies an endorsement of the source of such information or its validity.

The copyrights and/or trademarks in some of the images, logos or other material used herein may be owned by entities other than Two Sigma. If

so, such copyrights and/or trademarks are most likely owned by the entity that created the material and are used purely for identification and

comment as fair use under international copyright and/or trademark laws. Use of such image, copyright or trademark does not imply any

association with such organization (or endorsement of such organization) by Two Sigma, nor vice versa.

