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Abstract

In the machine learning research community, it
is generally believed that there is a tension be-
tween memorization and generalization. In this
work, we examine to what extent this tension ex-
ists, by exploring if it is possible to generalize
by memorizing alone. Although direct memo-
rization with a lookup table obviously does not
generalize, we find that introducing depth in the
form of a network of support-limited lookup ta-
bles leads to generalization that is significantly
above chance and closer to those obtained by stan-
dard learning algorithms on several tasks derived
from MNIST and CIFAR-10. Furthermore, we
demonstrate through a series of empirical results
that our approach allows for a smooth tradeoff
between memorization and generalization and ex-
hibits some of the most salient characteristics of
neural networks: depth improves performance;
random data can be memorized and yet there is
generalization on real data; and memorizing ran-
dom data is harder in a certain sense than mem-
orizing real data. The extreme simplicity of the
algorithm and potential connections with gener-
alization theory point to several interesting direc-
tions for future research.

1. Introduction
Neural networks trained through stochastic gradient descent
(SGD) can memorize their training data. Although practi-
tioners have long been aware of this phenomenon, Zhang
et al. (2017) recently brought attention to it by showing
that standard SGD-based training on AlexNet gets close
to zero training error on a modification of the ImageNet
dataset even when the labels are randomly permuted. This
leads to an interesting question: If neural nets have suffi-
cient capacity to memorize random training sets why do
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they generalize on real data? A natural hypothesis is that
nets behave differently on real data than on random data.
Arpit et al. (2017) study this question experimentally and
show that there are apparent differences in behavior. They
conclude that generalization and memorization depend not
just on the network architecture and optimization procedure
but on the dataset itself.

But what if networks fundamentally do not behave differ-
ently on real data than on random data, and, in both cases,
are simply memorizing? This is a difficult question to ex-
plore for two reasons. First, it is hard to provide a direct
answer. Whereas it is easy to tell when a net is memoriz-
ing random data (the training error goes to zero!), there
is no easy way to tell when a network is memorizing real
data as opposed to “learning”. Second, and perhaps more
importantly, it contradicts the intuitive notion—inherent in
the preceding discussion—that memorization and general-
ization are at odds. This work attempts to shed light on
this second difficulty by investigating the following: How
much can you learn if memorization is all you can do? Is
generalization even possible in this setting?

At first, generalization in such a setting of pure memoriza-
tion may seem hopeless: the simplest way to memorize
would be to build a lookup table from the training data.
Although this approach works for special cases where the
input population is finite and small, it fails in general since
the examples seen during training are unlikely to match test
examples. One way to get around this limitation is to use
k-Nearest Neighbors (k-NN) or any of its variants at test
time. While k-NNs work well on many problems, they fail
on problems where it is not easy to construct a semantically
meaningful distance function on the input space. In such
cases, the obvious syntactic distance functions (e.g., say Eu-
clidean distance between images viewed as vectors in Rd)
do not work well. Indeed some of the most interesting re-
sults from deep learning have been the discovery—through
learning—of semantically meaningful distance functions
(via embeddings).

Therefore, in this work we do not allow ourselves a distance
function. Instead, we get around the problem by applying
the notion of depth, which has been wildly successful in
improving the performance of neural networks, to direct
memorization. We build a network of lookup tables (also
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called “luts”) where the luts are arranged in successive lay-
ers much like a neural network. However, unlike a neural
network, training happens through memorization and does
not involve backpropagation, gradient descent, or any ex-
plicit search. Now, since in contrast to a neuron, the function
implemented by a lut can be arbitrarily complex, without
some means to control the complexity, the notion of depth
is vacuous. We control the complexity of a function learned
by a lut in the simplest possible way: we limit the support
(and thereby the size) of the lut. Each lut in a layer receives
inputs from only a few luts in the previous layer, which are
picked at random when the network is constructed. This
kind of restriction on local function complexity is similar
to what is found to work well in deep neural networks. For
example, a convolutional filter is obviously support-limited,
and a fully connected layer although not support-limited
is nevertheless limited in expressivity. Furthermore, the
learned weight matrices in neural networks are often sparse
or can be made so with no loss in accuracy (Han et al.,
2015).

We need two restrictions before we can proceed to an al-
gorithm. First, for simplicity, we focus our attention on
binary classification problems. Second, because lookup ta-
bles work naturally with discrete inputs, in this work we
limit ourselves to discrete signals. In fact, the inputs and
all intermediate signals in the network of lookup tables
are binary. The restriction is not as extreme as it may ap-
pear. There are a number of results in quantized and binary
neural networks showing that limited precision is often suf-
ficient (e.g. Rastegari et al., 2016). Furthermore, even in
real-valued neural networks, we need mechanisms such as
convolution and pooling to ensure that certain types of small
changes in the inputs (e.g., a small displacement) do not
lead to large changes in output. In principle, similar mech-
anisms could be used in a fully discrete setting to handle
real-valued quantities.

With these restrictions in place, we are now ready to pro-
ceed.

2. A Single Lookup Table
Let B = {0, 1} and consider the problem of learning a
function f : Bk → B from a list of training examples where
each example is an (x, y) pair. Since we want to learn by
memorizing, we construct a lookup table with 2k rows (one
for each possible bit pattern p ∈ Bk that can appear at the
input) and two columns y0 and y1. The y0 entry for the
row corresponding to pattern p (denoted by cp0) counts how
many times p is associated with output 0 in the training set,
i.e., the number of occurrences of (p, 0) in the training set.
Similarly, the y1 entry for row p (denoted by cp1) counts
how many times the pattern p is associated with the output
1 in the training set, i.e., the number of occurrences of (p, 1)

in the training set. Note that for a pattern p it is possible for
both cp0 and cp1 to be greater than zero since due to Bayes
error both (p, 0) and (p, 1) may be present in the training
examples. It is also possible for both cp0 and cp1 to be zero
if the input p never appears in the training examples. We
call such a lookup table a k-input lookup table or a k-lut
since the inputs are bit vectors of length k.1

Next, we associate a boolean function f̂ : Bk → B with the
lookup table in the following manner:

f̂(p) =

 1 if cp1 > cp0,
0 if cp1 < cp0,
b if cp1 = cp0

where b ∈ B is picked uniformly at random when fixing
f̂ in order to break ties. In other words, f̂ maps an input
p to the output that is most often associated with it in the
training set (breaking ties randomly). We say that f̂ is the
function learned by the lookup table.

Example 1. Let k = 3 and consider learning a function
f : B3 → B from 7 examples shown on the left below.
The lookup table that we learn is shown in the middle, and
the truth table of the learned function f̂ is shown on the
right. The entries in the truth table which have been picked
randomly to break ties are indicated by an asterisk.

x
x0x1x2

y

000 0
000 1
000 1
001 1
100 0
110 0
110 1

p
x0x1x2

y0 y1

000 1 2
001 0 1
010 0 0
011 0 0
100 1 0
101 0 0
110 1 1
111 0 0

p f̂

000 1
001 1
010 0∗

011 1∗

100 0
101 1∗

110 1∗

111 0∗

Note that f̂ gets all training examples correct except for
the first and sixth. This is the best we can do on this set of
training examples because the Bayes error rate is non-zero.
�

If we measure training error as the average 0–1 loss on
the training set, this procedure to learn f̂ has the following
properties:

1. Optimality. The learned function f̂ is Bayes-optimal
on the training set, i.e., there is no function g : Bk →
B with training error strictly less than that of f̂ . In
particular, the training error is zero iff the training set
has zero Bayes error.

2. Monotonicity. If we have more information for each
x in the training set, i.e., we augment each training

1 Typically k is small (less than 10) and so the the table can be
stored explicitly. The input bit vector (viewed as an integer) can
be used to directly index into the table.
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example with m extra bits of information (keeping the
labels fixed) and use the above procedure to now learn
a new function ĝ : Bk+m → B, then the training error
of ĝ is no more than that of f̂ .

Proof Sketch. Optimality is easy to see since the total train-
ing error is the sum of the training error for each possible
pattern p which is minimized by choosing the majority class
for each p. Monotonicity holds since if not, then we can
compose the obvious projection Bk+m → Bk with f̂ to get
a contradiction with the optimality of ĝ. �

Note that monotonicity implies in particular that the training
accuracy at the output of a lut is no worse than that at any
of its inputs. Furthermore, as we make the luts larger, the
training error cannot increase but only decrease. This is
interesting since there are no restrictions on the m extra bits:
they could be completely non-informative. These properties
will prove useful in the next section as we consider networks
of luts.

To summarize, the procedure described to learn a single
lookup table in this section is essentially memorization in
the presence of Bayes error, where the idea is to simply
remember the output that is most commonly associated with
an input in the training set.

3. A Network of Lookup Tables
Now consider a binary classification task on MNIST (LeCun
& Cortes, 2010) of separating the digits ‘0’ through ‘4’ (we
map these to the 0 class) from the digits ‘5’ through ‘9’ (the
1 class) where the pixels are 1-bit quantized. Thus the task
is to learn a function f : B28×28 → B. We call this the
Binary-MNIST task (overloading binary here to mean both
binary classification and binary inputs).

In principle, we could use the procedure in Section 2 to learn
this function. However, since we have only 60,000 training
examples in MNIST, most of the 228×28 rows in the lookup
table would have 0 entries in both columns, and hence the
function learned would be mostly random and have very
poor generalization to inputs outside the training set.

As discussed in the introduction, we get around this problem
by introducing depth. Instead of learning a giant lookup
table with 228×28 entries, we learn a network of (much)
smaller lookup tables. The network consists of d layers with
each layer l (1 ≤ l ≤ d) having nl k-input lookup tables.
Each lut in first layer (l = 1) receives its inputs from a k-
random subset of the network inputs. A lut in a layer l > 1
receives inputs from a k-random subset of the luts in layer
l − 1. The connectivity is fixed at network creation time
and does not change during training or inference. The final
layer of the network has a single lookup table (i.e., nd = 1)
which is the output of the network. By analogy with neural

w10 w11

x0 x1 x2x0

f10 f11

f20
^

^ ^

Figure 1. The network from Example 2.

networks, we call the final layer the output layer and the
other layers hidden layers.

We train the lookup tables layer by layer, where the target of
each lookup table is the final output. We start from the first
layer and work our way to the output. Once a layer has been
learned, we use the functions associated with its luts (the
f̂s of Section 2) to map its inputs to outputs. These outputs
serve as the inputs for the next layer, which is learned next.
Continuing our analogy with neural networks, we call the
output values of a layer activations.

Inference is similar to training: We start from the inputs and
evaluate each layer in order using the functions learned at
each lut to map inputs to outputs.

Example 2. We modify Example 1. Instead of learning a
single lut with k = 3 inputs, we learn a network of k = 2
luts. The network shown in Figure 1 has d = 2 layers. The
first layer has 2 luts (i.e., n1 = 2) which are connected to
inputs x0 and x1 of the network. The second layer (which
is also the output layer) has 1 lut (i.e., n2 = 1) which is
connected to the outputs of the two luts in the first layer.
(The connections were made randomly when the network
was created.) Using the procedure in Section 2, the two
lookup tables learned in the first layer (using y as the target)
along with their corresponding functions f̂10 and f̂11 are:

p
x0x1

y0 y1 f̂10

00 1 3 1
01 0 0 1∗

10 1 0 0
11 1 1 1∗

p
x0x2

y0 y1 f̂11

00 1 2 1
01 0 1 1
10 2 1 0
11 0 0 1∗

Let the output of the luts in the first layer be w10 and w11,
i.e., w10 = f̂10(x0x1) and w11 = f̂11(x0x2). The learning
problem for the lut in the second layer is shown in the tables
below. For convenience, on the left we show the primary
inputs x0, x1 and x2, the first layer activations w10 and w11

(which are the inputs of the lut), and the target output y. On
the right we show the table and the learned function f̂20:
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x
x0x1x2

w10w11 y

000 11 0
000 11 1
000 11 1
001 11 1
100 00 0
110 10 0
110 10 1

p
w10w11

y0 y1 f̂20

00 1 0 0
01 0 0 1∗

10 1 1 0∗

11 1 3 1

In this case the function implemented by the network of
2-luts has the same performance on the training set as the
function learned by the 3-lut in Example 1. Since there
are fewer possible patterns in the case of smaller luts, we
expect better pattern coverage during training and hence
better generalization. �

Implementation. The memorization procedure described
here is linear in the size of the training data, requiring two
passes over the training set. It is computationally efficient
since it only involves counting and dense table lookups and
does not require floating point. It is also easy to parallelize
since each lut in a given layer is independent, and the counts
can be computed on disjoint subsets of the training data
and then combined (using, for example, a reduction tree).
Note that using this property it is possible to execute the
algorithm on extremely large datasets where all the training
examples may not fit on a single machine with only the
summary statistics of the data (the counts in the lookup
tables) being exchanged across machines.

4. Experiments
Experiment 1. In the first experiment, we apply the above
procedure to the Binary-MNIST task (as defined in Section 3)
to see if this approach to memorization can generalize. For
this experiment, we construct a network with 5 hidden layers
of 1024 luts and 1 lut in the output layer. We set k = 8, i.e.,
each lut in the network takes 8 inputs.

The network achieves a training accuracy of 0.89 on this
task, which is perhaps not so surprising since we are mem-
orizing the training data after all. But what is surprising
is that the network achieves an accuracy of 0.87 on a held-
out set (the 10,000 test images in MNIST) which indicates
generalization.

This result is not state-of-the-art on this variant of MNIST
(see Experiment 4), but that is not the point. It is signifi-
cantly above the 0.5 accuracy that would be expected by
chance, and this is achieved by an algorithm that only mem-
orizes and performs no explicit search.

The training and test accuracies are stable: there is very
little variation from run to run. In other words, very little
depends on the actual random choices made when deciding
the topology of the network. To understand why this is

Table 1. Layer by layer training accuracy of network of 8-input
lookup tables on Binary-MNIST. Note that the statistics for layer 0
do not correspond to luts but to the 28× 28 inputs.

LAYER
LUT TRAINING ACCURACY

COUNT MEAN STD MIN MAX

0 784 0.5072 0.0340 0.4042 0.6572
1 1024 0.6055 0.0403 0.5120 0.7299
2 1024 0.7431 0.0191 0.6721 0.7877
3 1024 0.8297 0.0068 0.8038 0.8526
4 1024 0.8655 0.0033 0.8562 0.8751
5 1024 0.8808 0.0015 0.8759 0.8853
6 1 0.8898 0.0000 0.8898 0.8898

the case, we look at training accuracies of the luts in the
network. Since the target for each lut in the network is the
final classification target, we can examine the accuracy of a
lut as a function of its layer.

Table 1 shows the summary statistics for the accuracies of
luts in each layer. We observe that as depth increases the
average accuracy of the luts in a layer goes up. In other
words, depth helps. Some intuition for this is provided
by the monotonicity property of the luts: the output of
a lut cannot have lower accuracy than any of its inputs
(Section 2).

Furthermore, we observe in Table 1 the dispersion in accu-
racy across the luts (measured either by standard deviation
(std) or the difference between max and min) goes down.
Therefore, as depth increases the specifics of the connec-
tivity matters less and the network automatically becomes
more stable with respect to the random choices made during
construction. Indeed we can say something stronger: we
have seen in our experiments (not shown in Table 1) that as
depth increases the activations of the luts in a layer become
more correlated with each other, and hence become more
interchangeable. While this correlation is good for stability
with respect to connectivity, it causes diminishing returns
with additional depth.

Remark. The perceptive reader looking at Table 1 will also
notice that we are wasting computation: the single output
lut in layer 6 receives input from only 8 of the 1024 luts in
layer 5 and these in turn can at most receive inputs from 64
luts from layer 4. Although a different topology would be
more computationally efficient, this specific choice allows
us to compare the different layers more easily. We have not
optimized this aspect since it typically takes less than 30 sec-
onds using a single threaded unoptimized implementation
(Python with NumPy) to run an experiment.

Experiment 2. As discussed in the introduction and in
Section 3, we do not expect unbridled memorization in the
form of a large lookup table (say k = 28 × 28 in the case
of Binary-MNIST) to generalize at all. This motivated our
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Table 2. Effect of varying lookup table size on Binary-MNIST.

k
ACCURACY

ON REAL DATA ON RANDOM DATA
TRAINING TEST TRAINING TEST

2 0.66 0.66 0.51 0.53
4 0.81 0.81 0.53 0.54
6 0.85 0.86 0.55 0.52
8 0.89 0.87 0.60 0.51

10 0.94 0.89 0.69 0.50
12 0.99 0.90 0.82 0.51
14 1.00 0.83 0.92 0.51
16 1.00 0.66 0.98 0.52

exploration of a network of smaller lookup tables parameter-
ized by k (the number of inputs of each lut). We now vary
k to see if we can control the amount of memorization and
to see the effect it has on generalization. To avoid changing
too much at once, we keep the number of layers and the
number of luts per layer the same as in Experiment 1.

The results are shown in the first 3 columns of Table 2.
With small values of k, the network finds it difficult to
memorize the training data. As intuitively expected (see also
the monotonicity property in Section 2), as k increases the
training accuracy goes up with perfect memorization at k =
14, i.e., long before 28×28. However, larger luts generalize
less well, and the best test accuracy of 0.90 is achieved at
k = 12 though with substantially good memorization of the
training data (0.99). Interestingly, there is a clear monotonic
increase in the generalization gap measured as the difference
between training and test accuracy with increasing k.

Experiment 3. In this experiment—along the lines of those
performed in Zhang et al. (2017)—we randomly permute
the labels in the training set and repeat Experiment 2 on this
“random” dataset. The results are shown in columns 4 and 5
of Table 2. As expected, with increasing k the network gets
better at memorizing the training data, and the test accuracy
hovers around chance (0.5) though with significant varia-
tion (± 0.05). This may be viewed as empirical evidence
that the Rademacher complexity goes up with k.

However, and this may be surprising for a pure memoriza-
tion algorithm, memorizing random data turns out to be
harder than memorizing real data (columns 2 and 3 of Ta-
ble 2) in the sense that a larger k is required to get the same
accuracy with random data than with real data. For example,
it takes until k = 12 to get comparable training accuracy
on random data as k = 4 gets on real data. This result cor-
roborates the findings in Arpit et al. (2017, §3 and §4) that
real data is easier to fit than random data. But it also means
that we cannot conclude that any such difference observed
in neural networks is because they do not use brute force
memorization on real data. As this experiment shows, such

Table 3. Performance of some standard methods along with mem-
orization and random guessing on the Binary-MNIST task. Note
that unlike the others CONV NET is not permutation invariant.

METHOD
ACCURACY

TRAINING TEST

CONV NET 0.98 0.98
5-NEAREST NEIGHBORS 0.99 0.97
1-NEAREST NEIGHBOR 1.00 0.97

RANDOM FOREST (10 TREES) 1.00 0.96
MEMORIZATION 0.99 0.90

LOGISTIC REGRESSION 0.87 0.87
NAÏVE BAYES 0.76 0.77

RANDOM GUESS 0.50 0.50

differences can appear even with brute force memorization.

Finally, at k = 12 we have a network that is able to memo-
rize random data (random training accuracy of 0.82) and yet
generalizes to test data when trained on real data (real test
accuracy of 0.90). This is very similar to findings of Zhang
et al. (2017) in the context of neural networks. Kawaguchi
et al. (2017, §3) argue that this phenomenon is universal and
our result may be viewed as further empirical evidence for
their claim showing that this phenomenon can happen even
in the simplified setting of just memorization.

Experiment 4. For completeness, we compare memoriza-
tion with several standard methods and the results are shown
in Table 3. We have not specifically tuned the other methods
since our goal is not to beat the state-of-the-art but to get a
sense of how memorization alone does when compared to
the standard methods. The best performance is obtained by
a LENET-style convolutional network with 2 convolutions
(64 and 32 filters respectively) each followed by a corre-
sponding max pool layer, and 3 fully connected layers (256,
128 and 2 units respectively) with softmax output. The net
is trained for 6 epochs with stochastic gradient descent and
dropout.

Once again, compared to random guessing which has 0.50
test accuracy, memorization does quite well with a test ac-
curacy of 0.90 (using the k = 12 configuration from Ex-
periment 2) and beats logistic regression and naı̈ve Bayes.
Interestingly, 1- and 5-Nearest Neighbors do well too (test
accuracy of 0.97) though recall that they are provided with a
distance function which memorization does not have access
to and must in a sense discover.

Experiment 5. We now consider the task of separating
the i-th digit in MNIST from the j-th digit, which gives us(
10
2

)
= 45 binary classification tasks, which we collectively

call Pairwise-MNIST. The images are binarized as before.

Figure 2 shows the training accuracy and the test accuracy
for each of those 45 experiments for 8 different values of k.



Learning and Memorization

2 4 6 8 10 12 14 16
k

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

training
test

Figure 2. 45× 8 pairs of training and test accuracies as a function
of the size of the lookup table (k) for Pairwise-MNIST.

As in Experiment 2, we find that as k increases, the training
accuracy increases (reaching 1.0), but the test accuracy falls
off. If we look at the best test accuracies for a given task
(across k), on 31 out of the 45 tasks, we do better than 0.98.
The worst of these is 0.95 which is the best memorization
can do for separating ‘4’ and ‘9’. This is still significantly
better than the 0.5 we would expect by chance. Typically
the best test accuracies are achieved at k = 6 and k = 8.

Experiment 6. In Experiment 5 we notice that the variation
is quite high for k = 2. This indicates that the depth of the
network is insufficient for proper mixing. To investigate
this further, we keep k = 2 and vary the number of hidden
layers from 20 to 25. Each hidden layer still has 1024 luts.
Figure 3 shows how the training and test accuracies vary
with the depth of the network. It is interesting to note that
the test accuracy continues to improve even for relatively
deep networks (16 or 32 hidden layers), and we get very
high test accuracies even with such small lookup tables.
Furthermore, we note that the variation in the generaliza-
tion error (difference between training and test accuracies)
decreases with increasing depth.

Experiment 7. Next we look at memorization on CIFAR-10
which is a collection of 32 pixel by 32 pixel color images
belonging to 10 classes. As with Binary-MNIST, we quantize
each color channel to 1 bit and try to separate the classes
0 through 4 from classes 5 through 9. This gives us the
Binary-CIFAR-10 task where we have to learn a function
f : B3×32×32 → B from 50,000 images. Incidentally,
the quantization of each color channel to 1-bit significantly
degrades the signal making it a difficult task for humans.

For this task, we construct a network with 5 hidden layers
each with 1024 luts and one output layer with 1 output. We
set k = 10 for the luts. This network is able to achieve a
training accuracy of 0.79 and a test accuracy of 0.63. Al-
though not as impressive in absolute terms as the memoriza-

0 1 2 3 4 5
log2(d − 1)
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difference

Figure 3. The effect of depth (d) on networks with small lookup
tables (k = 2) for Pairwise-MNIST.

tion result on Binary-MNIST, it is still significantly above
chance (0.50). Furthermore, as before, the result is very
stable and does not depend on a specific random topology
chosen when the network is constructed.

We compare memorization with several standard methods in
Table 4. By comparing Table 4 with Table 3 it is clear that
Binary-CIFAR-10 is a harder task than Binary-MNIST since
all the methods perform significantly worse on it. The best
test accuracy of 0.71 is again from a LENET-style network
similar to the one used in Experiment 4, but with 40 epochs
of training. We believe a ResNet-style architecture (He et al.,
2016) may potentially do better here but since our goal is
not to achieve state-of-the-art but see how memorization
does, we leave this to future work. For the same reason we
don’t explore data augmentation here which is a standard
technique for CIFAR-10.

Once again, memorization compares favorably on test accu-
racy with the other methods, and compared to Binary-MNIST
it does relatively better here since it ties with the nearest
neighbor searches.

Table 4. Performance of some standard methods along with mem-
orization and random guessing on the Binary-CIFAR-10 task. Note
that unlike the others CONV NET is not permutation invariant.

METHOD
ACCURACY

TRAINING TEST

CONV NET 0.93 0.71
RANDOM FOREST (300 TREES) 1.00 0.66

5-NEAREST NEIGHBORS 0.75 0.63
1-NEAREST NEIGHBOR 1.00 0.63

MEMORIZATION 0.79 0.63
LOGISTIC REGRESSION 0.64 0.56

NAÏVE BAYES 0.55 0.56
RANDOM GUESS 0.50 0.50
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Table 5. Training accuracy (below diagonal) and test accuracy (above diagonal) on Pairwise-CIFAR-10.

PLANE AUTO BIRD CAT DEER DOG FROG HORSE SHIP TRUCK

PLANE 0.77 0.77 0.80 0.82 0.81 0.84 0.81 0.71 0.79
AUTO 0.96 0.79 0.77 0.79 0.80 0.80 0.78 0.76 0.67
BIRD 0.95 0.98 0.68 0.63 0.69 0.66 0.72 0.83 0.81

CAT 0.96 0.98 0.96 0.70 0.61 0.68 0.71 0.81 0.76
DEER 0.96 0.98 0.95 0.96 0.73 0.69 0.71 0.83 0.81

DOG 0.98 0.99 0.97 0.96 0.97 0.72 0.70 0.82 0.79
FROG 0.97 0.98 0.95 0.95 0.97 0.96 0.75 0.85 0.80

HORSE 0.98 0.99 0.96 0.97 0.96 0.98 0.97 0.81 0.75
SHIP 0.93 0.96 0.98 0.98 0.98 0.98 0.99 0.98 0.77

TRUCK 0.97 0.95 0.98 0.97 0.97 0.98 0.98 0.97 0.98

Experiment 8. In this experiment, we consider the
Pairwise-CIFAR-10 tasks which are defined analogously to
Pairwise-MNIST. We use the same network architecture as
in Experiment 7 instead of optimizing specifically for these
tasks. Training accuracies are generally 0.95 and above
whereas the test accuracies range from 0.61 (CAT v/s DOG)
to 0.85 (FROG v/s SHIP) with an average test accuracy of
0.76 which is significantly above chance.

Experiment 9. To get qualitative insight into the decision
boundaries learned with different levels of memorization,
we classify points in the region [−2, 2] × [−2, 2] ∈ R2 as
being inside or outside the circle x2 + y2 ≤ 1.62. Our
dataset consists of points on a 100 × 100 grid in this region
which has been partitioned into equal test and training sets
(Figure 4, leftmost column). To make this a hard problem
we encode each point as pair of 10-bit fixed-point numbers.
We learn this function f : B20 → B using networks with
32 layers each with 2048 luts and vary k. With k = 10
(rightmost column), the training set is memorized perfectly
but (as seen on test) the concept is not learned. However,
memorizing with k = 2, we learn a simpler concept that is
not faithful around the “corners” (as can be seen by zooming
in) but one that generalizes almost perfectly to test. Finally,
k = 6 provides a satisfactory compromise between the two
extremes. Thus, once again, we see that memorization if
done carefully can lead to good generalization.

5. Comparison with Other Methods
It is instructive to compare our memorization procedure
with a few commonly used procedures for learning.

k-Nearest Neighbors. The key difference, as noted in the
introduction, is that k-NNs require a user-specified distance
function which is often syntactic notion of distance such
that induced by treating an image as a vector in Rd. These
syntactic notions of distance do not work well on more chal-
lenging tasks and one may view such a learning problem
as essentially that of discovering a semantically meaning-
ful distance function. We see this in our experiments: the
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Figure 4. The decision boundaries learned in Experiment 9.

distance function helps more with Binary-MNIST (Experi-
ment 4) than it does with Binary-CIFAR-10 (Experiment 7).
Furthermore, in a separate experiment we found that aug-
menting the table lookup with 1-NN search at test time did
not significantly improve test accuracy for Binary-CIFAR-10
where memorization was already tied with k-NNs.

Additionally, k-NN requires storing the entire training set
and is typically computationally more expensive at test time.
For example, on Binary-MNIST the standard k-NN imple-
mentation in scikit-learn (Pedregosa et al., 2011) took more
than an hour to evaluate performance on the training and
test sets (as opposed to seconds with memorization). There
has been work on speeding up nearest neighbor search by
using locality sensitive hashing (Indyk & Motwani, 1998)
and, more recently, with random projections (Li & Malik,
2016). In that context, one may view each lookup table
as implementing a trivial locality sensitive hash function
where the distance metric arises from exact equality, and the
network as an ensemble through cascading of such nearest
neighbors classifiers.

Neural Networks. The initial motivation for this work was
to understand neural networks better; particularly to explore
with a model the idea that perhaps SGD is a sophisticated
way to memorize training data in a manner that generalizes
and that perhaps there are simpler ways to memorize data
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as well that may yet generalize. However, a key difference
is that gradient descent-based training can learn useful in-
termediate representations or targets for hidden layers. In
this work we have side stepped that question, by simply
setting the intermediate target to be the final output. It is an
interesting line of research to see if we can find a way to
learn useful intermediate signals in this setting perhaps by
purely combinatorial methods. Practically, that would give
us a method to learn purely binary neural networks with-
out using floating point at all, which is useful in resource
constrained environments.

Random Forests. Trees in a random forest are constructed
over a subset of the data by iteratively evaluating different
input variables to optimize purity after splitting on the vari-
able (Breiman, 2001). In contrast, memorization uses the
whole dataset and does not solve any optimization problem
(which makes it more computationally efficient). Further-
more, random forests combine the tree predictions using
voting whereas memorization uses cascading.

Cascading and Stacked Generalization. A recent exten-
sion of random forests are Deep Forests (Zhi-Hua Zhou,
2017) where multiple random forests are constructed at
each level and then cascaded using the idea of stacked gen-
eralization (Wolpert, 1992) which is a generalization of
cross-validation. In contrast, layers of luts are far simpler,
and memorization propagates outputs based on what has
been memorized over the entire training data. Due to the
manner in which we construct the lookup tables and the
corresponding functions (using the counts of the patterns) it
is not clear to us that stacked generalization will help.

Spectral Methods. There is a rich literature on the theory
of learning boolean functions (f : Bk → B in our nota-
tion) (Mansour, 1994) which looks at theoretical learning
guarantees under assumptions on the input distribution (typ-
ically uniform) and on the spectrum of the function (e.g. f
can be approximated by a sparse and low degree polynomial
in the boolean fourier basis). Recently, Hazan et al. (2017)
have used these techniques in hyperparameter optimization
where they find them to be practically useful (the distribu-
tional assumption is not fatal for this application). This line
of work does not deal with depth, but only linear combina-
tions of the basis functions. However, there is similarity in
having a low degree in the fourier basis and our notion of
support-limited memorization. These are similar structural
priors and our results and those of Hazan et al. may be
viewed as evidence that real world functions satisfy these
priors.

Learning Boolean Circuits. There is relatively little prior
work in directly learning boolean circuits (Oliveira &
Sangiovanni-Vincentelli, 1994; Tapp, 2014). However, it is
interesting to note that the memorization algorithm in Sec-
tion 3 although developed independently and from different

considerations is similar to the greedy algorithm described
by Tapp.2 An important difference is that instead of learning
a single tree, we learn a network which makes learning more
stable (as seen in Experiment 1).

6. Conclusion
The experiments of Zhang et al. (2017) and Arpit et al.
(2017) on training with random data lead naturally to the
question that if neural networks can memorize random data
and yet generalize on real data, are they perhaps doing
something different in the two cases. This work started with
the opposite thought: What if in both cases they are simply
memorizing? This, in turn, leads to the question of whether
it is even possible to generalize from pure memorization.
Naı̈ve memorization with a lookup table is too simplistic
a model but, as we saw, a slightly more complex model in
the form of a network of support-limited lookup tables does
significantly better than chance and is closer to the standard
algorithms on a number of binary classification problems
from MNIST and CIFAR-10. (To investigate if this result
holds on other datasets is an important area of future work.)

Furthermore, this model replicates some of the key observa-
tions with neural networks: the performance of a network
improves with depth; it memorizes random data and yet gen-
eralizes on real data; and memorizing random data is harder
than real data. In particular, the last observation implies that
we cannot rule out memorization based on differences in
the hardness of learning between real and random data.

For future work, we would like to understand why memo-
rization generalizes. Now, since the size of the hypothesis
space is bounded by 2n2

k

(where n is the number of k-luts
in the network), we can use results from PAC-learning to
bound the generalization gap, but these bounds are typi-
cally weak or vacuous.3 Rademacher complexity may be
useful for small k (say 2), but for moderate k—where the
Rademacher complexity is high yet there is generalization—
we would need a different approach, perhaps one based on
stability (Bousquet & Elisseeff, 2002). In this connection,
we expect the results in Devroye & Wagner (1979) to apply
to a single lut, but extensions are needed to handle networks
of luts, i.e., depth. Furthermore, these would have to incor-
porate details of the construction since not every network of
luts generalizes (even for k = 2).

Finally, given the computational efficiency of memorization,
we would like to extend it to a practically useful algorithm
for learning, but that would likely involve introducing some
form of explicit optimization or search.

2We thank David Krueger for noticing the connection.
3 For example, using Theorem 2.2 in Mohri et al. (2012) for the

experiments in Table 2 (with δ = 0.01 for concreteness) bounds
the gap to 0.34 for k = 2. The bound doubles as k increases by 2.
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