
Gradient Sparsification for Communication-Efficient
Distributed Optimization

Jianqiao Wangni
University of Pennsylvania

Tencent AI Lab
wnjq@seas.upenn.edu

Jialei Wang
Two Sigma Investments

jialei.wang@twosigma.com

Ji Liu
University of Rochester
jliu@cs.rochester.edu

Tong Zhang
Tencent AI Lab

tongzhang@tongzhang-ml.org

Abstract

Modern large-scale machine learning applications require stochastic optimization
algorithms to be implemented on distributed computational architectures. A key
bottleneck is the communication overhead for exchanging information such as
stochastic gradients among different workers. In this paper, to reduce the communi-
cation cost, we propose a convex optimization formulation to minimize the coding
length of stochastic gradients. The key idea is to randomly drop out coordinates of
the stochastic gradient vectors and amplify the remaining coordinates appropriately
to ensure the sparsified gradient to be unbiased. To solve the optimal sparsification
efficiently, several simple and fast algorithms are proposed for an approximate
solution, with a theoretical guarantee for sparseness. Experiments on `2 regularized
logistic regression, support vector machines, and convolutional neural networks
validate our sparsification approaches.

1 Introduction

Modern large-scale machine learning applications require scaling stochastic optimization algorithms
[30, 28, 15, 11] to distributed computational architectures [10, 39, 12, 20, 19, 38] or multicore
systems [26, 9, 22, 25]. This problem has drawn significant attention from theoretical perspectives
about its communication complexity [33, 43, 3]. In the synchronized stochastic gradient method, each
worker processes a random minibatch of its training data, and then the local updates are synchronized
by making an All-Reduce step, which aggregates stochastic gradients from all workers, and taking
a Broadcast step that transmits the updated parameter vector back to all workers. The process is
repeated until a certain convergence criterion is met. An important factor that may significantly slow
down any optimization algorithm is the communication cost among workers. Even for the single
machine multi-core setting, where the cores communicate with each other by reading and writing
to a chunk of shared memory, conflicts of (memory access) resources may significantly degrade the
efficiency. The existing works on distributed machine learning mainly focus on two directions: 1)
how to design communication efficient algorithms to reduce the round of communications among
workers [43, 31, 13, 27, 42], and 2) about how to use large mini-batches without compromising
the convergence speed [21, 35, 36]. There are solutions to specific problems like mean estimation
[17, 32], component analysis [23], clustering [6], sparse regression [18] and boosting [7]. Several
papers considered the problem of reducing the precision of gradient by using fewer bits to represent
floating pointing numbers [29, 44, 37, 2, 40, 8] or only transmitting coordinates [1, 24].

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

In this paper, we propose a novel approach to complement these methods above. Specifically, we
sparsify stochastic gradients appropriately to reduce the communication cost, with minor sacrifice
on the number of iterations. The key idea behind of our sparsification technology is to drop some
coordinates of the stochastic gradient and appropriately amplify the remaining coordinates to ensure
the unbiasness of the sparsified stochastic gradient. The sparsification approach can significantly
reduce the coding length of the stochastic gradient and only slightly increase the variance of the
stochastic gradient. This paper proposes a convex formulation to achieve the best tradeoff of variance
and sparsity: the optimal probabilities to sample coordinates can be obtained given any fixed variance
budget. To solve this optimization within a linear time, several efficient algorithms are proposed to
find approximate optimal solutions with sparsity guarantees. The proposed sparsification approach
can be encapsulated seamlessly to many bench-mark stochastic optimization algorithms in machine
learning, such as SGD [4], SVRG [15, 41], SAGA [11], and ADAM [16]. Empirical study is
provided to validate the proposed approach on `2 regularized logistic regression, support vector
machines, and convolutional neural networks on both synthetic and real-world data sets.

2 Algorithms

We consider the problem of sparsifying a stochastic gradient vector, and formulate it as a linear
planning problem. The following notations will be used throughout the paper. Consider a training data
set {xn}Nn=1 ⊂ Ω, and each training data point xn is associating with a loss function fn : Ω→ R,
that is associating with the nth data point xn. We use w ∈ Rd to denote the model parameter vector,
and consider solving the following optimization problem using stochastic optimization methods:

min
w

f(w) :=
1

N

N∑
n=1

fn(w), wt+1 = wt − ηtgt(wt), (1)

where t indicates the iterations and E [gt(w)] = ∇f(w). serves as an unbiased estimate for the true
gradient∇f(wt). The following are two ways to choose gt, like SGD [41, 4, 34] and SVRG [15]

SGD : gt(wt) = ∇fnt
(wt), SVRG : gt(wt) = ∇fnt

(wt)−∇fnt
(w̃) +∇f(w̃) (2)

where nt is uniformly sampled from the data set and w̃ is a reference point. The above derivation
implies that the convergence of SGD is significantly dominated by E‖gt(wt)‖2 or equivalently the
variance of gt(wt). It can be seen from the following simple derivation. Assume that the loss function
f(w) isL-smooth with respect tow, which means that for ∀x, y ∈ Rd, ‖∇f(x)−∇f(y)‖ ≤ L‖x−y‖
(where ‖ · ‖ is the `2-norm). Then the expected loss function is given by

E [f(wt+1)] ≤ E
[
f(wt) +∇f(wt)

>(xt+1 − xt) +
L

2
‖xt+1 − xt‖2

]
=E

[
f(wt)− ηt∇f(wt)

T gt(wt) +
L

2
η2t ‖gt(wt)‖2

]
= f(wt)− ηt‖∇f(wt)‖2 +

L

2
η2t E ‖gt(wt)‖2︸ ︷︷ ︸

variance

,

where the inequality is due to the Lipschitzian property, and the second equality is due to the unbiased
nature of the gradient E [gt(w)] = ∇f(w). So the magnitude of E(‖gt(wt)‖2) or equivalently the
variance of gt(wt) will significantly affect the convergence efficiency.

Next we consider how to reduce the communication cost in distributed machine learning by using a
sparsification of stochastic gradient gt(wt), denoted by Q(g(wt)), such that Q(gt(wt)) is unbiased,
and has a relatively small variance. In the following, to simplify notation, we denote the current
stochastic gradient gt(wt) by g for short, in which we drop the subscript t and wt. Note that g
can be obtained either by SGD or SVRG. We also let gi be the i-th component of vector g ∈ Rd:
g = [g1, . . . , gd]. We propose to randomly drop out the i-th coordinate by a probability of 1 − pi,
which means that the coordinates remains non-zero with a probability of pi. Let Zi ∈ {0, 1} be
a binary-valued random variable indicating whether the i-th coordinate is selected: Zi = 1 with
probability pi and Zi = 0 with probability 1− pi. Then, to make the resulting sparsified gradient
vector Q(g) unbiased, we amplify the non-zero coordinates, from gi to gi/pi. So the final sparsified
vector is Q(g)i = Zi(gi/pi). The whole protocol can be summarized as follows:
Gradients g = [g1, g2, · · · , gd],Probabilities p = [p1, p2, · · · , pd],Selectors Z = [Z1, Z2, · · · , Zd],

where P (Zi = 1) = pi, =⇒ Results Q(g) =

[
Z1
g1
p1
, Z2

g2
p2
, · · · , Zd

gd
pd

]

2

We note that if g is an unbiased estimate of the gradient, then Q(g) is also an unbiased estimate of
the gradient since E [Q(g)i] = pi × gi

pi
+ (1− pi)× 0 = gi.

In distributed machine learning, each worker calculates gradient g and transmits it to the master
node or the parameter server for update. We use an index m to indicate a node, and assume there
are totally M nodes. The gradient sparsification method can be used with a synchronous distributed
stochastic optimization algorithm in Algorithm 1. Asynchronous algorithms can also be used with
our technique in a similar fashion.

Algorithm 1 A synchronous distributed optimization algorithm
1: Initialize the clock t = 0 and initialize the weight w0.
2: repeat
3: Each worker m calculates local gradient gm(wt) and the probability vector pm.
4: Sparsify the gradients Q(gm(wt)) and take an All-Reduce step vt = 1

M

∑M
m=1Q(gm(wt)).

5: Broadcast the average gradient vt and take a descent step wt+1 = wt − ηtvt on all workers.
6: until convergence or the number of iteration reaches the maximum setting.

Our method could be combined with other methods which are orthogonal to us, like only transmitting
large coordinates and accumulating the gradient residual which might be transmitted in the next
step [1, 24]. Advanced quantization and coding strategy from [2] can be used for transmitting valid
coordinates of our method. In addition, a similar objective was also formulated in [17] for studying the
mean estimation problem on distributed data, with a statistical guarantee under skewness, comparably,
we studied a more generalized problem, with a specific algorithm proposed to actually determine the
sparsification probability vectors.

2.1 Mathematical formulation

Although the gradient sparsification technique can reduce communication cost, it increases the
variance of the gradient vector, which might slow down the convergence rate. In the following section
we will investigate how to find the best tradeoff between sparsity and variance for the sparsification
technique. In particular, we consider how to find out the optimal sparsification strategy, given a
budget of maximal variance. First note that the variance of Q(g) can be bounded by

E
d∑
i=1

[Q(g)2i] =

d∑
i=1

[
g2i
p2i
× pi + 0× (1− pi)

]
=

d∑
i=1

g2i
pi
.

In addition, the expected sparsity of Q(gi) is given by E [‖Q(g)‖0] =
∑d
i=1 pi. In this section, we

try to balance these two factors (sparsity and variance) by formulating it as a linear planning problem
as follows:

min
p

d∑
i=1

pi s.t.

d∑
i=1

g2i
pi
≤ (1 + ε)

d∑
i=1

g2i , (3)

where 0 < pi ≤ 1,∀i ∈ [d], and ε is a factor that controls the variance increase of the stochastic
gradient g. This leads to an optimal strategy for sparsification given an upper bound on the variance.
The following proposition provides a closed-form solution for problem (3).

Proposition 1. The solution to the optimal sparsification problem (3) is a probability vector p such
that pi = min(λ|gi|, 1),∀i ∈ [d], where λ > 0 is a certain constant only depending on g and ε.

2.2 Sparsification algorithms

In this section we propose two algorithms for efficiently calculating the optimal probability vector p
in Proposition 1. Since λ > 0, by the complementary slackness condition we have

d∑
i=1

g2i
pi
− (1 + ε)

d∑
i=1

g2i =

k∑
i=1

g2(k) +

d∑
i=k+1

|g(i)|
λ
− (1 + ε)

d∑
i=1

g2i = 0,

3

where {g(i)}di=1 is a sorted version of {gi}di=1 in a descending order. This further implies

λ =

∑d
i=k+1 |g(i)|

ε
∑d
i=1 g

2
i +

∑d
i=k+1 g

2
(i)

, |g(k+1)|

(
d∑

i=k+1

|g(i)|

)
≤ ε

d∑
i=1

g2i +

d∑
i=k+1

g2(i). (4)

where we used the constraint λ|g(k+1)| ≤ 1. It follows that we should find the smallest k which
satisfies the above inequality. Based on above reasoning, we get the following closed-form solution
for pi in Algorithm 2.

Algorithm 2 Closed Form Solution
1: Find the smallest k such that the second inequality of (4) is true, and let Sk be the set of

coordinates with top k largest magnitude of |gi|.
2: Set the probability vector p by

pi =

 1, if i ∈ Sk
|gi|(

∑d
j=k+1 |g(j)|)

ε
∑d

j=1 g
2
(j)

+
∑d

j=k+1 g
2
(j)

, if i 6∈ Sk.

In practice, using Algorithm 2 to find Sk requires partial sorting of the gradient magnitude values,
which could be computationally expensive. Therefore we developed a greedy algorithm for approxi-
mately solving the problem. We pre-define a sparsity parameter ρ ∈ [0, 1], which implies that we aim
to find pi that satisfies

∑
i pi/d ≈ ρ. Loosely speaking, we want to initially set p̃i = ρd|gi|/

∑
i |gi|,

which sums to
∑
i p̃i = ρd, meeting our requirement on ρ. However, by the truncation operation

pi = min(p̃i, 1), the expected nonzero density will be less than ρ. Now, we can use an iterative
procedure, where in the next iteration, we fix the set of {pi : pi = 1} and scale the remaining values,
as summarized in Algorithm 3. The algorithm is much easier to implement, and computationally
more efficient on parallel computing architecture.

Algorithm 3 Greedy Algorithm
1: Input g ∈ Rd, ρ ∈ [0, 1]. Initialize p0 ∈ Rd, j = 0. Set p0i = min (ρd|gi|/

∑
i |gi|, 1) for all i.

2: repeat
3: Identify an active set I = {1 ≤ i ≤ D|pji 6= 1} and compute c = (ρd− d+ |I|)/

∑
i∈I p

j
i .

4: Recalibrate the values by pj+1
i = min(cpji , 1). j = j + 1.

5: until If c ≤ 1 or j reaches the maximum iterations. Return p = pj .

2.3 Coding strategy

Once we have computed a sparsified gradient vector Q(g), we need to pack the resulting vector
into a message for transmission. Here we apply a hybrid strategy for encoding Q(g). Suppose that
computers represent a floating point scalar using b bits, which is enough for a precise representation
of any variables with negligible loss in precision. We use two vectors for representing non-zero
coordinates, one for coordinates i ∈ Sk, and the other for coordinates i /∈ Sk. The vector QA(g)
represents {gi : i ∈ Sk}, where each item of QA(g) needs log d bits to represent the coordinates and
b bits for the value gi/pi. The vector QB(g) represents {gi : i 6∈ Sk}, since in this case, we have
pi = λ|gi|, we have for all i 6∈ Sk the quantized value Q(gi) = gi/pi = sign(gi)/λ. Therefore to
represent QB(g), we only need one floating point 1/λ, plus the non-zero coordinates i and its sign
sign(gi). Here we give an example about the format,

sparsified vector :

[
g1
p1
, 0, 0,

g4
p4
,
g5
p5
,
g6
p6
, · · · , 0

]
,Vector QA(g) :

[
1,
g1
p1
, 5,

g5
p5
· · · , 0

]
,

Vector QB(g) : [4,−1/λ, 6, 1/λ, · · ·] .
where i = 1, 5 ∈ Sk, i = 4, 6 6∈ Sk, g4 < 0, g6 > 0. Moreover, we can also represent the indices of
A and vector QB(g) using a dense vector of q̃ ∈ {0,±1, 2}d, where each component q̃i is defined as
Q(gi) = λQ(gi) when i 6∈ Sk and q̃i = 2 if i ∈ Sk. Using the standard entropy coding, we know
that q̃ requires at most

∑2
`=−1 d` log2(d/d`) ≤ 2d bits to represent.

4

3 Theoretical guarantees on sparsity

In this section we analyze the expected sparsity of Q(g), which equals to
∑d
i=1 pi. In particular we

show when the distribution of gradient magnitude values is highly skewed, there is a significant gain
in applying the proposed sparsification strategy. First, we define the following notion of approximate
sparsity on the magnitude at each coordinate of g:

Definition 2. A vector g ∈ Rd is (ρ, s)-approximately sparse if there exists a subset S ⊂ [d] such
that |S| = s and ‖gSc‖1 ≤ ρ ‖gS‖1, where Sc is the complement of S.

The notion of (ρ, s)-approximately sparsity is inspired by the restricted eigenvalue condition used
in high-dimensional statistics [5]. (ρ, s)-approximately sparsity measures how well the signal of
a vector is concentrated on a small subset of the coordinates of size s. As we will see later, the
quantity (1 + ρ)s plays an important role in establish the expected sparsity bound. Note that we can
always take s = d and ρ = 0 so that (ρ, s) satisfies the above definition with (1 + ρ)s ≤ d. If the
distribution of magnitude values in g is highly skewed, we would expect the existence of (ρ, s) such
that (1 + ρ)s� d. For example when g is exactly s-sparse, we can choose ρ = 0 and the quantity
(1 + ρ)s reduces to s which can be significantly smaller than d.

Lemma 3. If the gradient g ∈ Rd of the loss function is (ρ, s)-approximately sparse as in Definition 2.
Then we can find a sparsification Q(g) with ε = ρ in (3) (that is, the variance of Q(g) is increased
by a factor of no more than 1 + ρ), and the expected sparsity of Q(g) can be upper bounded by
E [‖Q(g)‖0] ≤ (1 + ρ)s.

Remark 1. Lemma 3 indicates that the variance after sparsification only increase by a factor of
(1 + ρ), while in expectation we only need to communicate a (1 + ρ)s-sparse vector after sparsified.
In order to achieve the same optimization accuracy, we may need to increase the number of iterations
by a factor up to (1 + ρ), and the overall number of floating point numbers communicated is reduced
by a factor of up to (1 + ρ)2s/d.

Above lemma shows the number of floating point numbers needed to communicate per iteration
is reduced by the proposed sparsification strategy. As shown in Section 2.3, we only need to use
one floating point number to encoding the gradient values in Sck, so there is a further reduction in
communication when considering the total number of bits transmitted, this is characterized by the
Theorem below.

Theorem 4. If the gradient g ∈ Rd of the loss function is (ρ, s)-approximately sparse as in Defini-
tion 2, and a floating point scalar costs b bits, then the coding length of Q(g) in Lemma 3 can be
bounded by s(b+ log2 d) + min(ρs log2 d, d) + b.

Remark 2. The coding length of the original gradient vector g is db, by considering the slightly
increased number of iterations to reach the same optimization accuracy, the total communication
cost is reduced by a factor of at least (1 + ρ)((s+ 1)b+ log2 d)/db.

4 Experiments

In this section we conduct experiments to validate the effectiveness and efficiency of the proposed
sparsification technique. We use `2 regularized logistic regression as an example for convex problems,
and take convolutional neural networks as an example for non-convex problems. The sparsification
technique shows strong improvement over a baseline of uniform sampling approach, the iteration
complexity is relatively less increased comparing to the communication costs we saved. Moreover, we
also conduct asynchronous parallel experiments on the shared memory architecture. In particular, our
experiments show that the proposed sparsification technique significantly reduces the conflicts among
multiple threads and dramatically improves the performance. In all experiments, the probability
vector p is calculated by Algorithm 3 and set the maximum iterations to be 2, which generates high
quality approximation of the optimal p vector.

We first validate the sparsification technique on the `2 regularized logistic regression problem using
SGD and SVRG respectively: f(w) = 1

N

∑
n log2

(
1 + exp(−a>nwbn)

)
+λ2||w||22, where an ∈ Rd,

bn ∈ {−1, 1}. The experiments are conducted on synthetic data for the convenience to control the
data sparsity. The mini-batch size is set to be 8 by default unless otherwise specified. We simulated
with M = 4 machines, where one machine is both a worker and the master that aggregates stochastic

5

5 10 15 20

10
−0.5

10
−0.4

10
−0.3

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1.3 spa:0.5

UniSp var:2 spa:0.5

GSpar var:3.9 spa:0.17

UniSp var:6 spa:0.17

GSpar var:12 spa:0.056

UniSp var:18 spa:0.056

5 10 15 20

10
−0.34

10
−0.33

10
−0.32

10
−0.31

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1 spa:0.5

UniSp var:2 spa:0.5

GSpar var:1.7 spa:0.17

UniSp var:6 spa:0.17

GSpar var:5 spa:0.056

UniSp var:18 spa:0.056

5 10 15 20

10
−0.38

10
−0.35

10
−0.32

10
−0.29

datapasses

f(
w

)−
f(

w
*)

 baseline:

GSpar var:1 spa:0.5

UniSp var:2 spa:0.5

GSpar var:1.1 spa:0.17

UniSp var:6 spa:0.17

GSpar var:2.4 spa:0.056

UniSp var:18 spa:0.056

5 10 15 20

10
−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1.3 spa:0.5

UniSp var:2 spa:0.5

GSpar var:3.9 spa:0.17

UniSp var:6 spa:0.17

GSpar var:12 spa:0.056

UniSp var:18 spa:0.056

5 10 15 20

10
−0.5

10
−0.4

10
−0.3

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1.1 spa:0.5

UniSp var:2 spa:0.5

GSpar var:2 spa:0.17

UniSp var:6 spa:0.17

GSpar var:6.1 spa:0.056

UniSp var:18 spa:0.056

5 10 15 20

10
−0.58

10
−0.57

10
−0.56

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1 spa:0.5

UniSp var:2 spa:0.5

GSpar var:1.1 spa:0.17

UniSp var:6 spa:0.17

GSpar var:2.2 spa:0.056

UniSp var:18 spa:0.056

Figure 1: SGD type comparison between gradient sparsification (GSpar) with random sparsification
with uniform sampling (UniSp).

5 10 15 20

10
−0.9

10
−0.7

10
−0.5

10
−0.3

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1.5 spa:0.5

UniSp var:2 spa:0.5

GSpar var:4.5 spa:0.17

UniSp var:6 spa:0.17

GSpar var:14 spa:0.055

UniSp var:18 spa:0.055

5 10 15 20

10
−0.34

10
−0.33

10
−0.32

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1.1 spa:0.5

UniSp var:2 spa:0.5

GSpar var:2.1 spa:0.17

UniSp var:6 spa:0.17

GSpar var:6.4 spa:0.055

UniSp var:18 spa:0.055

5 10 15 20

10
−0.4

10
−0.3

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1 spa:0.5

UniSp var:2 spa:0.5

GSpar var:1.1 spa:0.17

UniSp var:6 spa:0.17

GSpar var:2.8 spa:0.055

UniSp var:18 spa:0.055

5 10 15 20

10
−0.9

10
−0.7

10
−0.5

10
−0.3

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1.5 spa:0.5

UniSp var:2 spa:0.5

GSpar var:4.5 spa:0.17

UniSp var:6 spa:0.17

GSpar var:14 spa:0.055

UniSp var:18 spa:0.055

5 10 15 20

10
−0.4

10
−0.3

10
−0.2

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1.1 spa:0.5

UniSp var:2 spa:0.5

GSpar var:2.2 spa:0.17

UniSp var:6 spa:0.17

GSpar var:6.6 spa:0.055

UniSp var:18 spa:0.055

5 10 15 20

10
−0.4

10
−0.3

10
−0.2

datapasses

f(
w

)−
f(

w
*)

 baseline:

GSpar var:1 spa:0.5

UniSp var:2 spa:0.5

GSpar var:1.1 spa:0.17

UniSp var:6 spa:0.17

GSpar var:2.8 spa:0.055

UniSp var:18 spa:0.055

Figure 2: SVRG type comparison between gradient sparsification (GSpar) with random sparsification
with uniform sampling (UniSp)

gradients received from other workers. We compare our algorithm with a uniform sampling method
as baseline, where each element of the probability vector is set to be pi = ρ. In this method, the
sparsified vector is of ρ-sparse in expectation. The data set {an}Nn=1 is generated as follows

dense data: āni ∼ N (0, 1), ∀i ∈ [d], n ∈ [N], sparsify: B̄ ∼ Uniform[0, 1]d, B̄i ← C1B̄i,

if: B̄i ≤ C2, ∀i ∈ [d], an ← ān � B̄, label: w̄ ∼ N (0, I), bn ← sign(ā>n w̄)

where � is the element-wise multiplication. We put the explanation for this process in the appendix
due to limited space. We should note that by the aforementioned data generation process, the parame-
ters C1 and C2 control the sparsity of data points and the gradients: the smaller these two constants
are, the sparser the gradients are; and the gradient of linear models on the dataset should be expected
to be

(
(1− C2)d,C2

C1

C1+2

)
-approximately sparse. We set the dataset of size N = 1024, dimension

6

d = 2048. The step sizes are fine-tuned on each case, and in our findings, the empirically optimal step
size is inversely related to the gradient variance as the theoretical analysis. In Figures 1 and 2, from the
top row to the bottom row, the `2 regularization parameter λ is set to 1/(10N), 1/N . And in each row,
from the first column to the last column, C2 is set to 4−1, 4−2, 4−3. In these figures, our algorithm
is denoted by GSpar, and the uniform sampling method is denoted by UniSp, and the SGD/SVRG
algorithm with non-sparsified communication is denoted by baseline, indicating the original dis-
tributed optimization algorithm. The x-axis shows the number of data passes, and the y-axis draws the
suboptimality of the objective function (f(wt)−minw f (w)). For the experiments, we report the
sparsified-gradient SGD variance as the notation ‘var’ in Figure 1. And ‘spa’ in all figures represents
the sparsity parameter ρ in Algorithm 3. We observe that the theoretical complexity reduction against
the baseline in terms of the communication rounds, which can be inferred by var×spa, from the labels
in Figures 1 to 2, where C1 = 0.9, and the rest of figures are put in appendix due to the limited space.

5 10 15

10
−0.39

10
−0.36

10
−0.33

10
−0.3

communications

f(
w

)−
f(

w
*)

baseline:

GSpar Bits:34

QSGD(20) Bits:20

GSpar Bits:9.3

GSpar Bits:5.2

QSGD(5) Bits:5

GSpar Bits:1.8

GSpar Bits:0.75

QSGD(2) Bits:2

5 10 15 20

10
−0.324

10
−0.323

10
−0.322

communications

f(
w

)−
f(

w
*)

baseline:

GSpar Bits:30

QSGD(20) Bits:20

GSpar Bits:11

GSpar Bits:5.5

QSGD(5) Bits:5

GSpar Bits:3.4

GSpar Bits:1

QSGD(2) Bits:2

5 10 15 20

10
−0.5

10
−0.4

10
−0.3

communications

f(
w

)−
f(

w
*)

baseline:

GSpar Bits:34

QSGD(20) Bits:20

GSpar Bits:7

GSpar Bits:5.4

QSGD(5) Bits:5

GSpar Bits:1.5

GSpar Bits:0.75

QSGD(2) Bits:2

5 10 15 20

10
−0.5

10
−0.4

10
−0.3

communications

f(
w

)−
f(

w
*)

baseline:

GSpar Bits:32

QSGD(20) Bits:20

GSpar Bits:7.2

GSpar Bits:5.6

QSGD(5) Bits:5

GSpar Bits:3.8

GSpar Bits:0.76

QSGD(2) Bits:2

Figure 3: Comparison of the sparisified-SGD with
QSGD.

By comparing the results in Figure 1, we observe
that results on sparser data yields smaller gradi-
ent variance than results on denser data. Com-
pared to uniform sampling, our algorithm gen-
erates gradients with less variance, and it con-
verges much faster. This observation is consis-
tent with the objective of our algorithm, which
is to minimize gradient variance given a certain
sparsity. The convergence slowed down linearly
with respect to the increase of variance. The
results on SVRG show better speed up — al-
though our algorithm increases the variance of
gradients, the convergence rate degrades only
slightly.

We compared the gradient sparsification method
with the quantized stochastic gradient descent
(QSGD) algorithm in [2]. The results are shown
in Figures 4. The data are generated as previous,
with both strong and weak sparsity settings. From the top row to the bottom row, the `2 regularization
parameter λ is set to 1/(10N), 1/N . And in each row, from the first column to the last column, C2 is
set to 4−1, 4−2. The step sizes are set to be the same for both methods for a fair comparison after
fine-tuning. In this comparison, we use the overall communication coding length of each algorithm,
and note the length in x-axis. For QSGD, the communication cost per element is linearly related to b,
which refers to the bits of floating point number. QSGD(b) denotes QSGD algorithm with bit number
b in these figures, and the average bits required to represent per element is on the labels. We also
tried to compare with the gradient residual accumulation approaches [1, 24], which unfortunately
failed on our experiments, where the gradient is sparse so that lots of coordinates could be delayed
infinitely, resulting in a large gradient bias to sabotage the convergence on convex problems. From
Figures 4, we observe that the proposed sparsification approach is at least comparable to QSGD, and
significantly outperforms QSGD when the gradient sparsity is stronger; and this concords with our
analysis on the gradient approximate sparsity encouraging faster speed up.

4.1 Experiments on deep learning

This section conducts experiments on non-convex problems. We consider the convolutional neural
networks on the CIFAR10dataset. We experiment with neural networks using different settings.
Generally, the networks consist of three convolutional layers (3 × 3), two pooling layers (2 × 2),
and one 256 dimensional fully connected layer. Each convolution layer is followed by a batch-
normalization layer. The channels of each convolutional layer is set to {24, 32, 48, 64}. We use
the ADAM optimization algorithm [16], and the initial step size is set to 0.02. In Figure 4.1, we
plot the objective loss against the computational complexity measured by the number of epochs (1
epoch is equal to 1 pass of all training samples). We also plot the convergence with respect to the
communication cost, which is the product of computations and the sparsification parameter ρ. The
experiments on each setting are repeated 4 times and we report the average objective function values.
The results show that for this non-convex problem, the gradient sparsification slows down the training

7

efficiency only slightly. In particular, the optimization algorithm converges even when the sparsity
ratio is about ρ = 0.004, and the communication cost is significantly reduced in this setting. This
experiments also shows that the optimization of neural networks is less sensitive to gradient noises,
and the noises within a certain range may even help the algorithm to avoid bad local minimums [14].

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Computations

0.50

0.75

1.00

1.25

1.50

1.75

2.00
rho=1.0
rho=0.07
rho=0.045
rho=0.015
rho=0.004
rho=0.001

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Communications

0.50

0.75

1.00

1.25

1.50

1.75

2.00
rho=1.0
rho=0.07
rho=0.045
rho=0.015
rho=0.004
rho=0.001

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Computations

0.50

0.75

1.00

1.25

1.50

1.75

2.00 rho=1.0
rho=0.07
rho=0.045
rho=0.015
rho=0.004
rho=0.001

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Communications

0.50

0.75

1.00

1.25

1.50

1.75

2.00 rho=1.0
rho=0.07
rho=0.045
rho=0.015
rho=0.004
rho=0.001

Figure 4: Comparison of convolutional neural net-
works of 3 layers of channels of 64 (top) and
48 (bottom) on CIFAR10. (Y-axis: loss function
f(wt).)

4.2 Experiments
on asynchronous parallel SGD

In this section, we study parallel implementa-
tions of SGD on the multi-core architecture.
We employ the support vector machine for bi-
nary classification, where the loss function is
f(w) = 1

N

∑
n max(1−a>nwbn, 0)+λ2||w||22,

an ∈ Rd, bn ∈ {−1, 1}. We implemented
shared memory multi-thread SGD, where each
thread employs a locked read, which may block
other threads’ writing to the same coordinate.
We use atomic instructions for updating coordi-
nates. To improve the speed of the algorithm,
we also employ several engineering tricks. First,
we observe that ∀pi < 1, gi/pi = sign(gi)/λ from Proposition 1, therefore we only need to assign
constant values to these variables, without applying float-point division operations. Another costly
operation is the pseudo-random number generation in the sampling procedure; therefore we generate
a large array of pseudo-random numbers in [0, 1], and iteratively read the numbers during training
without calling a random number generating function. The data are generated by first generating
dense data, sparsifying them and generating the corresponding labels:

āni ∼ N (0, 1),∀i ∈ [d], n ∈ [N], w̄ ∼ Uniform[−0.5, 0.5]d, B̄ ∼ Uniform[0, 1]d,

B̄i ← C1B̄i, if:B̄i ≤ C2,∀i ∈ [d], an ← ān � B̄, bn ← sign(x>n w̄ + σ),whereσ ∼ N (0, 1).

The details of data generation are put in the appendix. We set the dataset of size N = 51200,
dimension d = 256, also set C1 = 0.01 and C2 = 0.9. The regularization parameter λ2 is denoted
by reg, the number of threads is denoted by W (workers), and the learning rate is denoted by lrt.
The number of workers is set to 16 or 32, the regularization parameter is set to {0.5, 0.1, 0.05}, and
the learning rate is chosen from {0.5, 0.25, 0.05, 0.25}. The convergence of objective value against
running time (milliseconds) is plotted in Figure 4.1, and the rest of figures are put in appendix due to
the limited space.

0 200 400 600
−2

−1

0

1

2

3

4

5

6
W:16 reg:0.5 lrt:0.5

rho=1/1
rho=1/2
rho=1/3
rho=1/4

0 200 400 600

−1

0

1

2

3

4

W:16 reg:0.5 lrt:0.25
rho=1/1
rho=1/2
rho=1/3
rho=1/4

0 200 400 600

0

1

2

3

4

5

6

7

W:16 reg:0.1 lrt:0.1
rho=1/1
rho=1/2
rho=1/3
rho=1/4

0 200 400 600
0

1

2

3

4

5

6

W:16 reg:0.1 lrt:0.05
rho=1/1
rho=1/2
rho=1/3
rho=1/4

0 200 400 600

1

2

3

4

5

6

7

8
W:16 reg:0.05 lrt:0.05

rho=1/1
rho=1/2
rho=1/3
rho=1/4

0 200 400 600

1

2

3

4

5

6

7

W:16 reg:0.05 lrt:0.025
rho=1/1
rho=1/2
rho=1/3
rho=1/4

Figure 5: Loss functions by a multi-thread SVM.
X-axis: time in milliseconds, Y-axis: log2(f(wt)).

From Figure 4.1, we can observe that using
gradient sparsification, the conflicts of multiple
threads for reading and writing the same coor-
dinate are significantly reduced. Therefore the
training speed is significantly faster. By compar-
ing with other settings, we also observe that the
sparsification technique works better at the case
when more threads are available, since the more
threads, the more frequently the lock conflicts
occur.

5 Conclusions

In this paper, we propose a gradient sparsifica-
tion technique to reduce the communication cost
for large scale distributed machine learning. We
propose a convex optimization formulation to
minimize the coding length of stochastic gradients given the variance budget that monotonically
depends on the computational complexity, with efficient algorithms and a theoretical guarantee.
Comprehensive experiments on distributed and parallel optimization of multiple models proved our

8

algorithm can effectively reduce the communication cost during training or reduce conflicts among
multiple threads.

References
[1] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent.

In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pages 440–445, 2017.

[2] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. In Advances in Neural
Information Processing Systems, pages 1707–1718, 2017.

[3] Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning
and optimization. In Advances in neural information processing systems, pages 1756–1764,
2015.

[4] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer, 2010.

[5] Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data: methods, theory
and applications. Springer Science & Business Media, 2011.

[6] Jiecao Chen, He Sun, David Woodruff, and Qin Zhang. Communication-optimal distributed
clustering. In Advances in Neural Information Processing Systems, pages 3727–3735, 2016.

[7] Shang-Tse Chen, Maria-Florina Balcan, and Duen Horng Chau. Communication efficient
distributed agnostic boosting. In Artificial Intelligence and Statistics, pages 1299–1307, 2016.

[8] Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle Olukotun. Understanding
and optimizing asynchronous low-precision stochastic gradient descent. In Proceedings of the
44th Annual International Symposium on Computer Architecture, pages 561–574. ACM, 2017.

[9] Christopher De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming the wild: A unified
analysis of hogwild-style algorithms. In Advances in neural information processing systems,
pages 2674–2682, 2015.

[10] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[11] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in Neural
Information Processing Systems, pages 1646–1654, 2014.

[12] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B Gibbons,
Garth A Gibson, Greg Ganger, and Eric P Xing. More effective distributed ml via a stale
synchronous parallel parameter server. In Advances in neural information processing systems,
pages 1223–1231, 2013.

[13] Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas
Hofmann, and Michael I Jordan. Communication-efficient distributed dual coordinate ascent.
In Advances in Neural Information Processing Systems, pages 3068–3076, 2014.

[14] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape
saddle points efficiently. In International Conference on Machine Learning, pages 1724–1732,
2017.

[15] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems, pages 315–323, 2013.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR), 2014.

9

[17] Jakub Konečnỳ and Peter Richtárik. Randomized distributed mean estimation: Accuracy vs
communication. arXiv preprint arXiv:1611.07555, 2016.

[18] Jason D Lee, Qiang Liu, Yuekai Sun, and Jonathan E Taylor. Communication-efficient sparse
regression. Journal of Machine Learning Research, 18(5):1–30, 2017.

[19] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski,
James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with
the parameter server. In OSDI, volume 1, page 3, 2014.

[20] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. Communication efficient distributed
machine learning with the parameter server. In Advances in Neural Information Processing
Systems, pages 19–27, 2014.

[21] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient mini-batch training for
stochastic optimization. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 661–670. ACM, 2014.

[22] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient
for nonconvex optimization. In Advances in Neural Information Processing Systems, pages
2737–2745, 2015.

[23] Yingyu Liang, Maria-Florina F Balcan, Vandana Kanchanapally, and David Woodruff. Improved
distributed principal component analysis. In Advances in Neural Information Processing
Systems, pages 3113–3121, 2014.

[24] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient com-
pression: Reducing the communication bandwidth for distributed training. arXiv preprint
arXiv:1712.01887, 2017.

[25] Ji Liu, Stephen J Wright, Christopher Ré, Victor Bittorf, and Srikrishna Sridhar. An asyn-
chronous parallel stochastic coordinate descent algorithm. The Journal of Machine Learning
Research, 16(1):285–322, 2015.

[26] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in neural information
processing systems, pages 693–701, 2011.

[27] Sashank J Reddi, Jakub Konečnỳ, Peter Richtárik, Barnabás Póczós, and Alex Smola. Aide:
Fast and communication efficient distributed optimization. arXiv preprint arXiv:1608.06879,
2016.

[28] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming: Series A and B, 162(1-2):83–112, 2017.

[29] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent
and its application to data-parallel distributed training of speech dnns. In Fifteenth Annual
Conference of the International Speech Communication Association, 2014.

[30] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning Research, 14(Feb):567–599, 2013.

[31] Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization
using an approximate newton-type method. In International conference on machine learning,
pages 1000–1008, 2014.

[32] Ananda Theertha Suresh, X Yu Felix, Sanjiv Kumar, and H Brendan McMahan. Distributed
mean estimation with limited communication. In International Conference on Machine Learn-
ing, pages 3329–3337, 2017.

[33] John N Tsitsiklis and Zhi-Quan Luo. Communication complexity of convex optimization.
Journal of Complexity, 3(3):231–243, 1987.

10

[34] Chong Wang, Xi Chen, Alexander J Smola, and Eric P Xing. Variance reduction for stochastic
gradient optimization. In Advances in Neural Information Processing Systems, pages 181–189,
2013.

[35] Jialei Wang, Weiran Wang, and Nathan Srebro. Memory and communication efficient distributed
stochastic optimization with minibatch prox. arXiv preprint arXiv:1702.06269, 2017.

[36] Jialei Wang and Tong Zhang. Improved optimization of finite sums with minibatch stochastic
variance reduced proximal iterations. arXiv preprint arXiv:1706.07001, 2017.

[37] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Tern-
grad: Ternary gradients to reduce communication in distributed deep learning. arXiv preprint
arXiv:1705.07878, 2017.

[38] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng,
Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. Petuum: A new platform for distributed
machine learning on big data. IEEE Transactions on Big Data, 1(2):49–67, 2015.

[39] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
Cauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, pages 2–2. USENIX Association,
2012.

[40] Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang. The zipml framework
for training models with end-to-end low precision: The cans, the cannots, and a little bit of deep
learning. ICML, 2017.

[41] Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the twenty-first international conference on Machine learning,
page 116. ACM, 2004.

[42] Yuchen Zhang and Xiao Lin. Disco: Distributed optimization for self-concordant empirical loss.
In International conference on machine learning, pages 362–370, 2015.

[43] Yuchen Zhang, Martin J Wainwright, and John C Duchi. Communication-efficient algorithms
for statistical optimization. In Advances in Neural Information Processing Systems, pages
1502–1510, 2012.

[44] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

11

	Introduction
	 Algorithms
	Mathematical formulation
	Sparsification algorithms
	Coding strategy

	 Theoretical guarantees on sparsity
	Experiments
	 Experiments on deep learning
	Experiments on asynchronous parallel SGD

	Conclusions

