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ΑΒΡΑΞΑΣ (ABRAXAS): Gnostic word of mystic meaning

ABSTRACT
We present ABRA, a suite of algorithms to compute and
maintain probabilistically-guaranteed, high-quality, approx-
imations of the betweenness centrality of all nodes (or edges)
on both static and fully dynamic graphs. Our algorithms
use progressive random sampling and their analysis rely on
Rademacher averages and pseudodimension, fundamental
concepts from statistical learning theory. To our knowledge,
this is the first application of these concepts to the field of
graph analysis. Our experimental results show that ABRA
is much faster than exact methods, and vastly outperforms,
in both runtime and number of samples, state-of-the-art al-
gorithms with the same quality guarantees.

Keywords
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1. INTRODUCTION
Centrality measures are fundamental concepts in graph

analysis: they assign to each node or edge in the network
a score that quantifies some notion of importance of the
node/edge in the network [21]. Betweenness Centrality (bc)
is a very popular centrality measure that, informally, defines
the importance of a node or edge z in the network as pro-
portional to the fraction of shortest paths in the network
that go through z [2, 13] (see Sect. 3 for formal definitions).
Brandes [9] presented an algorithm (denoted BA) to com-

pute the exact bc values for all nodes or edges in a graph
G = (V,E) in time O(|V ||E|) if the graph is unweighted,
or time O(|V ||E| + |V |2 log |V |) if the graph has positive
weights. The cost of BA is excessive on modern networks
with millions of nodes and tens of millions of edges. More-
over, having the exact bc values may often not be needed,
given the exploratory nature of the task, and a high-quality
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approximation of the values is usually sufficient, provided it
comes with stringent guarantees.
Today’s networks are not only large, but also dynamic:

edges are added and removed continuously. Keeping the
bc values up-to-date after edge insertions and removals is a
challenging task, and proposed algorithms [15, 17–19] have
worst-case time and space complexities not better than from-
scratch-recomputation using BA. Maintaining a high-quality
approximation up-to-date is more feasible and more sensi-
ble: there is little added value in keeping track of exact bc
values that change continuously.

Contributions. We focus on developing algorithms for ap-
proximating the bc of all nodes and edges in static and dy-
namic graphs. Our contributions are the following.
• We present ABRA (for “Approximating Betweenness with

Rademacher Averages”), the first family of algorithms based
on progressive sampling for approximating the bc of all
nodes in static and dynamic graphs, where node and edge
insertions and deletions are allowed. The bc approxima-
tions computed by ABRA are probabilistically guaranteed
to be within an user-specified additive error from their
exact values. We also present variants with relative error
(i.e., within a multiplicative factor ε of the true value) for
the top-k nodes with highest bc, and variants that use
refined estimators to give better approximations with a
slightly larger sample size.
• Our analysis relies on Rademacher averages [28] and pseu-
dodimension [23], fundamental concepts from the field of
statistical learning theory [30]. Exploiting known and
novel results using these concepts, ABRA computes the
approximations without having to keep track of any global
property of the graph, in contrast with existing algorithms [4,
6, 24]. ABRA performs only “real work” towards the com-
putation of the approximations, without having to obtain
such global properties or update them after modifications
of the graph. To the best of our knowledge, ours is the
first application of Rademacher averages and pseudodi-
mension to graph analysis problems, and the first to use
progressive random sampling for bc computation. Using
pseudodimension, we derive new analytical results on the
sample complexity of the bc computation task, generaliz-
ing previous contributions [24], and formulating a conjec-
ture on the connection between pseudodimension and the
distribution of shortest path lengths.
• The results of our experimental evaluation on real net-
works show that ABRA outperforms, in both speed and
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number of samples, the state-of-the-art methods offering
the same guarantees [24].
Due to space constraints, some details and additional re-

sults have been deferred to the extended online version [25].

2. RELATED WORK
The definition of Betweenness Centrality comes from the

sociology literature [2, 13], but the study of efficient algo-
rithms to compute it started only when graphs of substantial
size became available to the analysts, following the emer-
gence of the Web. The BA algorithm by Brandes [9] is cur-
rently the asymptotically fastest algorithm for computing
the exact bc values for all nodes in the network. A number
of works also explored heuristics to improve BA [12, 27], but
retained the same worst-case time complexity.
The use of random sampling to approximate the bc values

in static graphs was proposed independently by Bader et al.
[3] and Brandes and Pich [10], and successive works explored
the tradeoff space of sampling-based algorithms [4–6, 24].
We focus here on related works that offer approximation
guarantees similar to ours. For an in-depth discussion of
previous contributions approximating bc on static graphs,
we refer the reader to [24, Sect. 2].
Riondato and Kornaropoulos [24] present algorithms that

employ the Vapnik-Chervonenkis (VC) dimension [30] to
compute what is currently the tightest upper bound on the
sample size sufficient to obtain guaranteed approximations
of the bc of all nodes in a static graph. Their algorithms of-
fer the same guarantees as ours but, to compute the sample
size, they need to compute an upper bound on a character-
istic quantity of the graph (the vertex diameter, namely the
maximum number of nodes on any shortest path). Thanks
to our use of Rademacher averages in a progressive ran-
dom sampling setting, ABRA does not need to compute any
characteristic quantity of the graph, and instead uses an
efficient-to-evaluate stopping condition to determine when
the approximated bc values are close to the exact ones. This
allows ABRA to use smaller samples and be much faster than
the algorithms by Riondato and Kornaropoulos [24].
A number of works [15, 17–19] focused on computing the

exact bc for all nodes in a dynamic graph, taking into con-
sideration different update models. None of these algorithm
is provably asymptotically faster than a complete computa-
tion from scratch using Brandes’ algorithm [9] and they all
require significant amount of space (more details about these
works can be found in [4, Sect. 2]). In contrast, Bergamini
and Meyerhenke [4, 5] built on the work by Riondato and
Kornaropoulos [24] to derive an algorithm for maintaining
high-quality approximations of the bc of all nodes when the
graph is dynamic and both additions and deletions of edges
are allowed. Due to the use of the algorithm by Riondato
and Kornaropoulos [24] as a building block, the algorithm
must keep track of the vertex diameter after an update to
the graph. Our algorithm for dynamic graphs, instead, does
not need this piece of information, and therefore can spend
more time in computing the approximations, rather than in
keeping track of global properties of the graph. Moreover,
our algorithm can handle directed graphs, which is not the
case for the algorithms by Bergamini and Meyerhenke [4, 5].
Hayashi et al. [16] recently proposed a data structure

calledHypergraph Sketch to maintain the shortest path DAGs
between pairs of nodes following updates to the graph. Their
algorithm uses random sampling and this novel data struc-

ture allows them to maintain a high-quality, probabilistically
guaranteed approximation of the bc of all nodes in a dy-
namic graph. Their guarantees come from an application of
the simple uniform deviation bounds (i.e., the union bound)
to determine the sample size, as previously done by Bader
et al. [3] and Brandes and Pich [10]. As a result, the re-
sulting sample size is excessively large, as it depends on the
number of nodes in the graph. Our improved analysis using
the Rademacher averages allows us to develop an algorithm
that uses the Hypergraph Sketch with a much smaller num-
ber of samples, and is therefore faster.
Progressive random sampling with Rademacher Averages

has been used by Elomaa and Kääriäinen [11] and Riondato
and Upfal [26] in completely different settings.

3. PRELIMINARIES
We now introduce the formal definitions and basic results

that we use throughout the paper.

3.1 Graphs and Betweenness Centrality
Let G = (V,E) be a graph. G may be directed or undi-

rected and may have non-negative weights on the edges.
For any ordered pair (u, v) of different nodes u 6= v, let
Suv be the set of Shortest Paths (SPs) from u to v, and let
σuv = |Suv|. Given a path p between two nodes u, v ∈ V , a
node w ∈ V is internal to p iff w 6= u, w 6= u, and p goes
through w. We denote as σuv(w) the number of SPs from u
to v that w is internal to.

Definition 1 (Betweenness Centrality (bc) [2, 13]).
Given a graph G = (V,E), the Betweenness Centrality (bc)
of a node w ∈ V is defined as

b(w) = 1
|V |(|V | − 1)

∑
(u,v)∈V×V

u6=v

σuv(w)
σuv

(∈ [0, 1]) .

Many variants of bc have been proposed in the literature,
including one for edges [21]. Our results can be extended
to these variants, following the reduction by Riondato and
Kornaropoulos [24, Sect. 6], but we do not discuss them here
due to space constraints.
In this work we focus on computing an (ε, δ)-approximation

of the collection B = {b(w), w ∈ V }.

Definition 2 ((ε, δ)-approximation). Given ε, δ ∈ (0, 1),
an (ε, δ)-approximation to B is a collection B̃ = {b̃(w), w ∈
V } such that

Pr(∀w ∈ v, |b̃(w)− b(w)| ≤ ε) ≥ 1− δ .

In Sect. 4.2 we discuss a relative (i.e., multiplicative) error
variant for the top-k nodes with highest bc.

3.2 Rademacher Averages
Rademacher Averages are fundamental concepts to study

the rate of convergence of a set of sample averages to their
expectations. They are at the core of statistical learning the-
ory [30] but their usefulness extends way beyond the learn-
ing framework [26]. We present here only the definitions
and results that we use in our work and we refer the readers
to, e.g., the book by Shalev-Shwartz and Ben-David [28] for
in-depth presentation and discussion.
While the Rademacher complexity can be defined on an

arbitrary measure space, we restrict our discussion here to
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a sample space that consists of a finite domain D and a
uniform distribution over that domain. Let F be a family
of functions from D to [0, 1], and let S = {c1, . . . , c`} be a
sample of ` elements from D, sampled uniformly and inde-
pendently at random. For each f ∈ F , the true average and
the sample average of f on a sample S are, respectively,

mD(f) = 1
|D|

`∑
c∈D

f(c) and mS(f) = 1
`

`∑
i=1

f(ci) . (1)

Given S, we are interested in bounding the maximum devi-
ation of mS(f) from mD(f) among all f ∈ F , i.e.,

sup
f∈F
|mS(f)−mD(f)| . (2)

For 1 ≤ i ≤ `, let σi be a Rademacher r.v., i.e., a r.v. that
takes value 1 with probability 1/2 and −1 with probability
1/2. The r.v.’s σi are independent. Consider the quantity

R(F ,S) = Eσ

[
sup
f∈F

1
`

`∑
i=1

σif(ci)

]
, (3)

where the expectation is taken w.r.t. the Rademacher r.v.’s,
i.e., conditionally on S. The quantity R(F ,S) is known
as the (conditional) Rademacher average of F on S. The
following is a key result in statistical learning theory, con-
necting R(F ,S) to the maximum deviation (2).

Theorem 1 (Thm. 26.5 [28]). Let η ∈ (0, 1) and let S
be a collection of ` elements of D sampled independently and
uniformly at random. Then, with probability at least 1− η,

sup
f∈F
|mS(f)−mD(f)| ≤ 2R(F ,S) +

√
2 ln(2/η)

`
. (4)

Thm. 1 is how the result is classically presented, but better
although more complex bounds than (4) are available [22].

Theorem 2 (Thm. 3.11 [22]). Let η ∈ (0, 1) and let S
be a collection of ` elements of D sampled independently and
uniformly at random. Let

α =
ln 2

η

ln 2
η

+
√(

2`R(F ,S) + ln 2
η

)
ln 2

η

, (5)

then, with probability at least 1− η,

sup
f∈F
|mS(f)−mD(f)| ≤ R(F ,S)

1− α +
ln 2

η

2`α(1− α) +

√
ln 2

η

2` .

(6)

Computing, or even estimating, the expectation in (3)
w.r.t. the Rademacher r.v.’s is not straightforward and can
be computationally expensive, requiring a time-consuming
Monte Carlo simulation [7]. For this reason, upper bounds to
the Rademacher average are usually employed in (4) and (6)
in place of R(F ,S). A powerful and efficient-to-compute
bound is presented in Thm. 3. Given S, consider, for each
f ∈ F , the vector vf,S = (f(c1), . . . , f(c`)), and let VS =
{vf , f ∈ F} be the set of such vectors (|VS | ≤ |F|).

Theorem 3 ([26]). Let w : R+ → R+ be the function

w(s) = 1
s

ln
∑

v∈VS

exp(s2‖v‖2/(2`2)), (7)

where ‖ · ‖ denotes the Euclidean norm. Then

R(F ,S) ≤ min
s∈R+

w(s) . (8)

The function w is convex, continuous in R+, and has first
and second derivatives w.r.t. s everywhere in its domain, so
it is possible to minimize it efficiently using standard convex
optimization methods [8]. In future work, we plan to explore
how to obtain a tighter bound than the one presented in
Thm. 3 using recent results by Anguita et al. [1].

4. STATIC GRAPH BC APPROXIMATION
We now present and analyze ABRA-s, our progressive sam-

pling algorithm for computing an (ε, δ)-approximation to the
collection of exact bc values in a static graph. Many of the
details and properties of ABRA-s are shared with the other
ABRA algorithms we present.
Progressive Sampling. Progressive sampling algorithms
are intrinsically iterative. At a high level, they work as
follows. At iteration i, the algorithm extracts an approx-
imation of the values of interest (in our case, of the bc of
all nodes) from a collection Si of Si = |Si| random sam-
ples from a suitable domain D (in our case, the samples are
pairs of different nodes). Then, the algorithm checks a spe-
cific stopping condition that uses information obtained from
the sample Si and from the computed approximation. If
the stopping condition is satisfied, then the approximation
has, with the required probability, the desired quality (in
our case, it is an (ε, δ)-approximation). The approximation
is then returned in output and the algorithm terminates. If
the stopping condition is not satisfied, ABRA-s builds a col-
lection Si+1 by adding random samples to Si until it has size
Si+1. Then it computes a new approximation from the so-
created collection Si+1, and checks the stopping condition
again and so on.
There are two main challenges for the algorithm designer:

deriving a “good” stopping condition and determining good
choices for the initial sample size S1 and the subsequent
sample sizes Si+1, i ≥ 1.
Ideally, a good stopping condition is such that:

1. when satisfied, guarantees that the computed approxima-
tion has the desired quality properties (in our case, it is
an (ε, δ)-approximation); and

2. can be evaluated efficiently; and
3. is tight, in the sense that is satisfied at small sample sizes.
The stopping condition for ABRA-s is based on Thm. 2 and
Thm. 3, and has all the above desirable properties.
The second challenge is determining the sample schedule

(Si)i>0. Any monotonically increasing sequence of positive
numbers can act as sample schedule, but the goal in design-
ing a good sample schedule is to minimize the number of
iterations that are needed before the stopping condition is
satisfied, while minimizing the sample size Si at the iteration
i at which this happens. The sample schedule may be fixed
in advance, but an adaptive approach that ties the sample
schedule to the stopping condition can give better results,
as the sample size Si+1 for iteration i+ 1 can be computed
using information obtained in (or up-to) iteration i. ABRA
uses such an adaptive approach (see Sect. 4.1.1.)

4.1 Algorithm Description and Analysis
ABRA-s takes as input a graph G = (V,E), which may be

directed or undirected, and may have non-negative weights
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on the edges, and two parameters ε, δ ∈ (0, 1). It out-
puts a collection B̃ = {b̃(w), w ∈ V } that is an (ε, δ)-
approximation of the betweenness centralitiesB = {b(w), w ∈
V }. The algorithm samples from D = V × V, u 6= v}.
For each node w ∈ V , let fw : D → [0, 1] be the function

fw(u, v) = σuv(w)
σuv

, (9)

i.e., fw(u, v) is the fraction of shortest paths (SPs) from u
to v that go through w. Let F = {fw, w ∈ V } be the set of
these functions. Given this definition, we have that

mD(fw) = 1
|D|

∑
(u,v)∈D

fw(u, v)

= 1
|V |(|V | − 1)

∑
(u,v)∈V×V

u6=v

σuv(w)
σuv

= b(w) .

Let now S = {(ui, vi), 1 ≤ i ≤ `} be a collection of ` pairs
(u, v) from D. For the sake of clarity, we define

b̃(w) = mS(fw) = 1
`

`∑
i=1

fw((ui, vi)) .

For each w ∈ V consider the vector

vw = (fw(u1, v1), . . . , fw(u`, v`)) .

It is easy to see that b̃(w) = ‖vw‖1/`. Let now VS be the
set of these vectors:

VS = {vw, w ∈ V } (|VS | ≤ |V |) .

If we have complete knowledge of this set of vectors, then
we can compute the quantity

ω∗ = min
s∈R+

1
s

ln
∑

v∈VS

exp
(
s2‖v‖2/(2`2)

)
,

then use ω∗ in (5) in place of R(F ,S) to obtain α, and
combine (6), (7), and (8) to obtain

∆S = ω∗

1− α +
ln 2

η

2`α(1− α) +

√
ln 2

η

2` ,

and finally check whether ∆S ≤ ε. This is ABRA-s’s stop-
ping condition. When it holds, we can just return the col-
lection B̃ = {b̃(w) = ‖vw‖1/`, w ∈ V } since, from the def-
inition of ∆S and Thms. 2 and 3, we have that B̃ is an
(ε, δ)-approximation to the exact betweenness values.

ABRA-s works as follows. Suppose for now that we fix a
priori a monotonically increasing sequence (Si)i>0 of sam-
ple sizes (we show in Sect. 4.1.1 how to compute the sam-
ple schedule adaptively on the fly). The algorithm builds
a collection S by sampling pairs (u, v) independently and
uniformly at random from D until S has size S1. After each
pair of nodes has been sampled, ABRA-s performs an s − t
SP computation from u to v and then backtracks from v to
u along the SPs just computed, to keep track of the set VS
of vectors (details given below). For clarity of presentation,
let S1 denote S when it has size exactly S1, and analogously
for Si and Si, i > 1. Once Si has been built, ABRA-s com-
putes ∆Si using η = δ/2i and checks whether ∆Si is at most

ε. If so, then it returns B̃. Otherwise, ABRA-s iterates and
continues adding samples from D to S until it has size S2,
and so on until ∆Si ≤ ε holds. The pseudocode for ABRA-s
is presented in Alg. 1, including the steps to update VS and
to adaptively choose the sample schedule (Sect. 4.1.1). We
now prove the correctness of the algorithm.

Algorithm 1: ABRA-s: absolute error approximation of
bc on static graphs

input : Graph G = (V,E), accuracy parameter ε ∈ (0, 1),
confidence parameter δ ∈ (0, 1)

output: Set B̃ of bc approximations for all nodes in V
1 D ← {(u, v) ∈ V × V, u 6= v}
2 S0 ← 0, S1 ← (1+8ε+

√
1+16ε) ln(2/δ)
4ε2

3 0 = (0)
4 V = {0}
5 foreach w ∈ V do M [w] = 0
6 c0 ← |V |
7 i← 1, j ← 1
8 while True do
9 for `← 1 to Si − Si−1 do

10 (u, v)← uniform_random_sample(D)
11 compute_SPs(u, v) //Truncated SP computation
12 if reached v then
13 foreach z ∈ Pu[v] do σzv ← 1
14 foreach node w on a SP from u to v, in reverse

order by d(u,w) do
15 σuv(w)← σuwσwv
16 v←M [w]
17 v′ ← v ∪ {(j, σuv(w)}
18 if v′ 6∈ V then
19 cv′ ← 1
20 V ← V ∪ {v′}
21 else cv′ ← cv′ + 1
22 M [w]← v′
23 if cv > 1 then cv ← cv − 1
24 else V ← V \ {v}
25 foreach z ∈ Pu[w] do σzv ← σzv + σwv
26 end
27 end
28 j ← j + 1
29 end
30 ω∗i ← mins∈R+

1
s

ln
∑

v∈VS
exp
(
s2‖v‖2/(2S2

i )
)

31 αi ←
(i+1) ln 2

δ

(i+1) ln 2
δ

+
√

(2Siω∗i +(i+1) ln 2
δ )(i+1) ln 2

δ

32 ∆Si ←
ω∗i

1−αi
+ (i+1) ln 2

δ
2Siαi(1−αi)

+
√

(i+ 1) ln 2
δ

2Si
33 if ∆Si ≤ ε then break
34 else
35 Si+1 ← nextSampleSize()
36 i← i+ 1
37 end
38 end
39 return B̃ ← {b̃(w)← ‖M [w]‖1/Si, w ∈ V }

Theorem 4 (correctness). The collection B̃ returned
by ABRA-s is a (ε, δ)-approximation.

Proof. The claim follows from the definitions of S, VS ,
F , fw for w ∈ V , b̃(w), ∆Si , Thm. 3, and from the fact that,
at each iteration i, Thm. 2 holds with probability δ/2i.

Computing and maintaining the set VS . We now discuss
in details how ABRA-s efficiently maintain the set VS of
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vectors, which is used to compute the value ∆S and the
values b̃(w) = ‖vw‖1/|S| in B̃. In addition to VS , ABRA-s
also maintains a mapM from V to VS (i.e.,M [w] is a vector
vw ∈ VS), and a counter cv for each v ∈ VS , denoting how
many nodes w ∈ V have M [w] = v.
At the beginning of the execution of the algorithm, we

have S = ∅ and also VS = ∅. Nevertheless, ABRA-s ini-
tializes VS to contain one special empty vector 0, with no
components, and M so that M [w] = 0 for all w ∈ V , and
c0 = |V | (lines 3 and following in Alg. 1).
After having sampled a pair (u, v) from D, ABRA-s up-

dates VS , M and the counters as follows. First, it performs
(line 11) a s − t SP computation from u to v using any
SP algorithm (e.g., BFS or Dijkstra) modified, as discussed
by Brandes [9, Lemma 3], to keep track, for each node w
encountered during the computation, of the SP distance
d(u,w) from u to w, of the number σuw of SPs from u to w,
and of the set Pu(w) of (immediate) predecessors of w along
the SPs from u.1 Once v has been reached (and only if it
has been reached), the algorithm starts backtracking from
v towards u along the SPs it just computed (line 14). Dur-
ing this backtracking, the algorithm visits the nodes along
the SPs in inverse order of SP distance from u, ties broken
arbitrarily. For each visited node w different from u and v,
ABRA-s computes the value fw(u, v) = σuv(w) of SPs from
u to v that go through w, which is obtained as

σuv(w) = σuw ×
∑

z : w∈Pu(z)

σzv

where the value σuw is obtained during the s− t SP compu-
tation, and the values σzw are computed recursively during
the backtracking (line 25) [9]. After computing σuv(w), the
algorithm takes the vector v ∈ VS such that M [w] = v and
creates a new vector v′ by appending σuv(w) to the end of
v.2 Then it adds v′ to the set VS , updates M [w] to v′,
and increments the counter cv′ by one (lines 16 to 22). Fi-
nally, the algorithm decrements the counter cv by one, and
if cv becomes equal to zero, ABRA-s removes v from VS
(line 24). At this point, the algorithm moves to analyzing
another node w′ with distance from u less or equal to the
distance of w from u. It is easy to see that when the back-
tracking reaches u, the set VS , the mapM , and the counters,
have been correctly updated.
We remark that to compute ∆Si and B̃ and to keep the

map M up to date, ABRA-s does not actually need to store
the vectors in VS (even in sparse form), but it is sufficient
to maintain their `1- and Euclidean norms, which require
much less space.

4.1.1 Computing the sample schedule
We now discuss how to compute the initial sample size S1

at the beginning of ABRA-s (line 2 of Alg. 1) and the sample
size Si+1 at the end of iteration i of the main loop (line 35).
We remark that any sample schedule (Si)i>0 can be used,
and our method is an heuristic that nevertheless exploits
1Storing the set of immediate predecessors is not necessary.
By not storing it, we can reduce the space complexity from
O(|E|) to O(|V |), at the expense of some additional compu-
tation at runtime.
2ABRA-s uses a sparse representation for the vectors v ∈ VS ,
storing only the non-zero components of each v as pairs
(j, g), where j is the component index and g is the value of
that component.

all available information at the end of each iteration to the
most possible extent, with the goal of increasing the chances
that the stopping condition is satisfied at the next iteration.
As initial sample size S1 we choose

S1 ≥
(1 + 8ε+

√
1 + 16ε) ln(4/δ)
4ε2 . (10)

To understand the intuition behind this choice, recall (6),
and consider that, at the beginning of the algorithm, we ob-
viously have no information about R(F ,S1), except that it
is non-negative. Consequently we also cannot compute α as
in (5) using η = δ/2, but we can easily see that α ∈ [0, 1/2].
From the fact that R(F ,S) ≥ 0, we have that, for the
r.h.s. of (6) to be at most ε (i.e., for the stopping condi-
tion to be satisfied after the first iteration of the algorithm),
it is necessary that

ln 4
δ

2S1α(1− α) +

√
ln 4

δ

2S1
≤ ε .

Then, using the fact that the above expression decreases as
α increases, we use α = 1/2, i.e., its maximum attainable
value, to obtain the following inequality, where S1 acts as
the unknown:

2 ln(4/δ)
S1

+
√

ln(4/δ)
2S1

≤ ε .

Solving for S1 under the domain constraints S1 ≥ 1, δ ∈
(0, 1), and ε ∈ (0, 1) gives the unique solution in (10).
Computing the next sample size Si+1 at the end of iter-

ation i (in the pseudocode in Alg. 1, this is done by calling
nextSampleSize() on line 35) is slightly more involved. The
intuition is to assume that ω∗i , which is an upper bound
on R(F ,Si), is also an upper bound on R(F ,Si+1), what-
ever Si+1 will be, and whatever size it may have. At this
point, we can ask what is the minimum size Si+1 = |Si+1|
for which ∆Si+1 would be at most ε, under the assumption
that R(F ,Si+1) ≤ ω∗i . More formally, we want to solve the
inequality(

1 +
(i+ 2) ln 2

δ√
(2Si+1ω∗i + (i+ 2) ln 2

δ
)(i+ 2) ln 2

δ

)

×

(
ω∗i +

(i+ 2) ln 2
δ

+
√

(2Si+1ω∗i + (i+ 2) ln 2
δ
)(i+ 2) ln 2

δ

2Si+1

)

+

√
(i+ 2) ln 2

δ

2Si+1
≤ ε (11)

where Si+1 acts as the unknown. The l.h.s. of this inequality
is obtained by plugging (5) into (6) and using ω∗i in place of
R(F ,S), Si+1 in place of `, δ/2i+1 in place of η, and slightly
reorganize the terms for readability. Finding the solution
to the above inequality requires computing the roots of the
cubic equation (in x)

−8
(

(i+ 2) ln 2
δ

)3
+
(

(i+ 2) ln 2
δ

)2
(−16ω∗i + (1 + 4ε)2)x

− 4
(

(i+ 2) ln 2
δ

)
(ω∗i − ε)2(1 + 4ε)x2 + 4(b− f)4x3 = 0 .

(12)

One can verify that the roots of this equation are all reals.
The roots are presented in Table 1. The solution to inequal-
ity (11) is that Si+1 should be larger than one of these roots,
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but which of the roots it should be larger than depends on
the values of ω∗i , δ, and ε. In practice, we compute each
of the roots and then choose the smallest positive one such
that, when Si+1 equals to this root, then (11) is satisfied.
The assumption R(F ,Si+1) ≤ ω∗i , which is not guaranteed

to be true, is what makes our procedure for selecting the next
sample size an heuristics. Nevertheless, using information
available at the current iteration to compute the sample size
for the next iteration is more sensible than having a fixed
sample schedule, as it tunes the growth of the sample size
to the quality of the current sample. Moreover, it removes
from the user the burden of choosing a sample schedule,
effectively eliminating one parameter of the algorithm.

4.2 Relative-error Top-k Approximation
In practical applications it is usually necessary (and suffi-

cient) to identify the nodes with highest bc, as they act, in
some sense, as the “primary information gateways” of the
network. In this section we present a variant ABRA-k of
ABRA-s to compute a high-quality approximation of the set
TOP(k,G) of the top-k nodes with highest bc in a graph
G. The approximation b̃(w) returned by ABRA-k for a node
w is within a multiplicative factor ε from its exact value
b(w), rather than an additive factor ε as in ABRA-s. This
higher accuracy has a cost in terms of the number of samples
needed to compute the approximations.
Formally, assume to order the nodes in the graph in de-

creasing order by bc, ties broken arbitrarily, and let bk be
the bc of the k-th node in this ordering. Then the set
TOP(k,G) is defined as the set of nodes with bc at least
bk, and can contain more than k nodes:

TOP(k,G) = {(w, b(w) : v ∈ V and b(w) ≥ bk} .

The algorithm ABRA-k follows the same approach as the
algorithm for the same task by Riondato and Kornaropoulos
[24, Sect. 5.2] and works in two phases. Let δ1 and δ2 be
such that (1−δ1)(1−δ2) ≥ (1−δ). In the first phase, we run
ABRA-s with parameters ε and δ1. Let `′ be the k-th highest
value b̃(w) returned by ABRA-s, ties broken arbitrarily, and
let b̃′ = `′ − ε.
In the second phase, we use a variant ABRA-r of ABRA-s

with a modified stopping condition based on relative-error
versions of Thms. 1 and 3 (Thms. 11 and 12 from Ap-
pendix D of the extended online version [25]) , which take
ε, δ2, and λ = b̃′ as parameters. The parameter λ plays a
role in the stopping condition. Indeed, ABRA-r is the same
as ABRA-s, with the only crucial difference in the definition
of the quantity ∆Si , which is now:

∆Si = 2 min
s∈R+

1
s

ln
∑
v∈V

exp
(
s2‖v‖2

λ2S2
i

)
+ 3
λ

√
i
ln(4/δ)

2Si
.

(13)

Theorem 5. Let B̃ = {b̃(w), w ∈ V } be the output of
ABRA-r. Then B̃ is such that

Pr
(
∃w ∈ V : |̃b(v)− b(v)|

max{λ, b(v)} > ε

)
< δ .

The proof follows the same steps as the proof for Thm. 4,
using the above definition of ∆Si and applying Thms. 11
and 12 from Appendix D of the extended online version [25]
instead of Thms. 2 and 3.

Let `′′ be the kth highest value b̃(w) returned by ABRA-r
(ties broken arbitrarily) and let b̃′′ = `′′/(1 + ε). ABRA-k
then returns the set

T̃OP(k,G) = {(w, b̃(w)) : w ∈ V and b̃(w) ≥ b̃′′} .

We have the following result showing the properties of the
collection T̃OP(k,G).

Theorem 6. With probability at least 1−δ, the set T̃OP(k,G)
is such that:
1. for any pair (v, b(v)) ∈ TOP(k,G), there is one pair (v, b̃(v)) ∈

T̃OP(k,G) (i.e., we return a superset of the top-k nodes
with highest betweenness) and this pair is such that |̃b(w)−
b(w)| ≤ εb(w);

2. for any pair (w, b̃(w)) ∈ T̃OP(k,G) such that (w, b(w)) 6∈
TOP(k,G) (i.e., any false positive) we have that b̃(w) ≤
(1 + ε)bk (i.e., the false positives, if any, are among the
nodes returned by ABRA-k with lower bc estimation).

The proof and the pseudocode for ABRA-k can be found
in Appendix A of the extended online version [25].

4.3 Special Cases
In this section we consider some special restricted set-

tings that make computing an high-quality approximation
of the bc of all nodes easier. One example of such restricted
settings is when the graph is undirected and every pair of
distinct nodes is either connected with a single SP or there
is no path between the two nodes (because they belong to
different connected components). Examples of these set-
tings are many road networks, where the unique SP condi-
tion is often enforced [14]. Riondato and Kornaropoulos [24,
Lemma 2] showed that, in this case, the number of samples
needed to compute a high-quality approximation of the bc
of all nodes is independent of any property of the graph,
and only depends on the quality controlling parameters ε
and δ. The algorithm by Riondato and Kornaropoulos [24]
works differently from ABRA-s, as it samples one SP at a
time and only updates the bc estimation of nodes along this
path, rather than sampling a pair of nodes and updating
the estimation of all nodes on any SPs between the sampled
nodes. Nevertheless, as shown in the following theorem,
we can actually even generalize the result by Riondato and
Kornaropoulos [24], as shown in Thm. 7. The statement
and the proof of this theorem use pseudodimension [23], an
extension of the Vapnik-Chervonenkis (VC) dimension to
real-valued functions. Details about pseudodimension and
the proof of Thm. 7 can be found in Appendix B of the ex-
tended online version [25]. Corollary 1 shows how to modify
ABRA-s to take Thm. 7 into account.

Theorem 7. Let G = (V,E) be a graph such that it is
possible to partition the set D = {(u, v) ∈ V × V, u 6= v}
in two classes: a class A = {(u∗, v∗)} containing a single
pair of different nodes (u∗, v∗) such that σu∗v∗ ≤ 2 (i.e.,
connected by either at most two SPs or not connected), and
a class B = D\A of pairs (u, v) of nodes with σuv ≤ 1 (i.e.,
either connected by a single SP or not connected). Then the
pseudodimension of the family of functions

{fw : D → [0, 1], w ∈ V },

where fw is defined as in (9), is at most 3.
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Let


z = 48ω∗i + (1 + 4ε)2

w = −1− 12ε+ 8(27(ω∗i )2 + (21− 8ε)ε2 + 18ω∗i (1 + ε)
y = 12

√
3| − 1 + 2ω∗i + 2ε|

√
−(27(ω∗i )2 − ε2(1 + 16ε)− ω∗i (1 + 18ε))

θ = arg(−w + jy)/3 where j is the imaginary unity and arg(`) is the argument of the complex number `

Root 1 1
3 (i+ 2)(ln 2

δ
)((1 + 4ε)−

√
z cos θ)(ω∗i − ε)

−2

Root 2 1
6 (i+ 2)(ln 2

δ
)(2(1 + 4ε) +

√
z(cos θ +

√
3 sin θ))(ω∗i − ε)

−2

Root 3 1
6 (i+ 2)(ln 2

δ
)(2(1 + 4ε) +

√
z(cos θ −

√
3 sin θ))(ω∗i − ε)

−2

Table 1: Roots of the cubic equation (12) for the computation of the next sample size.

Corollary 1. Suppose to augment ABRA-s with the ad-
ditional stopping condition instructing to return the set B̃ =
{b̃(w), w ∈ V } after a total of

r = c

ε2

(
3 + ln 1

δ

)
pairs of nodes have been sampled from D. The set B̃ is an
(ε, δ)-approximation.

The bound in Thm. 7 is strict, i.e., there exists a graph
for which the pseudodimension is exactly 3 [24, Lemma 4].
Moreover, as soon as we relax the requirement in Thm. 7
and allow two pairs of nodes to be connected by two SPs,
there are graphs with pseudodimension 4 (Lemma 4 in Ap-
pendix B of the extended online version [25]).
For the case of directed networks, it is currently an open

question whether a high-quality (i.e., within ε) approxima-
tion of the bc of all nodes can be computed from a sample
whose size is independent of properties of the graph, but it
is known that, even if possible, the constant would not be
the same as for the undirected case [24, Sect. 4.1].
We conjecture that, given some information on how many

pair of nodes are connected by x shortest paths, for x ≥ 0,
it should be possible to derive a strict bound on the pseu-
dodimension associated to the graph.

4.4 Improved Estimators
Geisberger et al. [14] present an improved estimator for

bc using random sampling. Their experimental results show
that the quality of the approximation is significantly im-
proved, but they do not present any theoretical analysis.
Their algorithm, which follows the work of Brandes and
Pich [10] differs from ours as it samples nodes and per-
forms a Single-Source-Shortest-Paths (SSSP) computation
from each of the sampled nodes. We can use an adaptation
of their estimator in a variant of our algorithm, and we can
prove that this variant is still probabilistically guaranteed
to compute an (ε, δ)-approximation of the bc of all nodes,
therefore removing the main limitation of the original work,
which offered no quality guarantees. We now present this
variant considering, for ease of discussion, the special case
of the linear scaling estimator by Geisberger et al. [14]. This
technique can be extended to the generic parameterized es-
timators they present.
The intuition behind the improved estimator is to increase

the estimation of the bc for a node w proportionally to the
ratio between the SP distance d(u,w) from the first compo-
nent u of the pair (u, v) to w and the SP distance d(u, v)
from u to v. Rather than sampling pairs of nodes, the algo-
rithm samples triples (u, v, d), where d is a direction, (either
← or →), and updates the betweenness estimation differ-
ently depending on d, as follows. Let D′ = D×{←,→} and

for each w ∈ V , define the function gw from D′ to [0, 1] as:

gw(u, v, d) =

{
σuv(w)
σuv

d(u,w)
d(u,v) if d =→

σuv(w)
σuv

(
1− d(u,w)

d(u,v)

)
if d =←

Let S be a collection of ` elements of D′ sampled uniformly
and independently at random with replacement. Our esti-
mation b̃(w) of the bc of a node w is

b̃(w) = 2
`

∑
(u,v,d)∈S

gw(u, v, d) = 2mS(fw) .

The presence of the factor 2 in the estimator calls for a
single minor adjustment in the definition of ∆Si which, for
this variant of ABRA-s, becomes

∆Si = ω∗i
1− αi

+
(i+ 1) ln 2

δ

2Siαi(1− αi)
+

√
(i+ 1)

2 ln 2
δ

Si

i.e., w.r.t. the original definition of ∆Si , there is an addi-
tional factor 4 inside the square root of the third term on
the r.h.s..
The output of this variant of ABRA-s is still a high-quality

approximation of the bc of all nodes, i.e., Thm. 4 still holds
with this new definition of ∆Si . This is due to the fact
that the results on the Rademacher averages presented in
Sect. 3.2 can be extended to families of functions whose co-
domain is an interval [a, b], rather than just [0, 1] [28].

5. DYNAMIC GRAPH BC APPROXIMATION
In this section we present an algorithm, named ABRA-d,

that computes and keeps up to date an high-quality approxi-
mation of the bc of all nodes in a fully dynamic graph, i.e., in
a graph where nodes and edges can be added or removed over
time. Our algorithm builds on the recent work by Hayashi
et al. [16], who introduced two fast data structures called
the Hypergraph Sketch and the Two-Ball Index: the Hyper-
graph Sketch stores the bc estimations for all nodes, while
the Two-Ball Index is used to store the SP DAGs and to
understand which parts of the Hypergraph Sketch needs to
be modified after an update to the graph (i.e., an edge or
node insertion or deletion). Hayashi et al. [16] show how to
populate and update these data structures to maintain an
(ε, δ)-approximation of the bc of all nodes in a fully dynamic
graph. Using the novel data structures results in orders-of-
magnitude speedups w.r.t. previous contributions [4, 5]. The
algorithm by Hayashi et al. [16] is based on a static random
sampling approach which is identical to the one described
for ABRA-s, i.e., pairs of nodes are sampled and the bc es-
timation of the nodes along the SPs between the two nodes
are updated as necessary. Their analysis on the number of
samples necessary to obtain an (ε, δ)-approximation of the
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bc of all nodes uses the union bound, resulting in a number
of samples that depends on the logarithm of the number of
nodes in the graph, i.e., O(ε−2(log(|V |/δ))) pairs of nodes
must be sampled.

ABRA-d builds and improves over the algorithm presented
by Hayashi et al. [16] as follows. Instead of using a static
random sampling approach with a fixed sample size, we
use the progressive sampling approach and the stopping
condition that we use in ABRA-s to understand when we
sampled enough to first populate the Hypegraph Sketch
and the Two-Ball Index. Then, after each update to the
graph, we perform the same operations as in the algorithm
by Hayashi et al. [16], with the crucial addition, after these
operation have been performed, of keeping the set VS of
vectors and the map M (already used in ABRA-s) up to
date, and checking whether the stopping condition is still
satisfied. If it is not, additional pairs of nodes are sampled
and the Hypergraph Sketch and the Two-Ball Index are up-
dated with the estimations resulting from these additional
samples. The sampling of additional pairs continues until
the stopping condition is satisfied, potentially according to
a sample schedule either automatic, or specified by the user.
As we show in Sect. 6, the overhead of additional checks
of the stopping condition is minimal. On the other hand,
the use of the progressive sampling scheme based on the
Rademacher averages allows us to sample much fewer pairs
of nodes than in the static sampling case based on the union
bound: Riondato and Kornaropoulos [24] already showed
that it is possible to sample much less than O(log |V |) nodes,
and, as we show in our experiments, our sample sizes are
even smaller than the ones by Riondato and Kornaropou-
los [24]. The saving in the number of samples results in a
huge speedup, as the running time of the algorithms are, in
a first approximation, linear in the number of samples, and
in a reduction in the amount of space required to store the
data structures, as they now store information about fewer
SP DAGs.

Theorem 8. The set B̃ = {b̃(w), w ∈ V } returned by
ABRA-d after each update has been processed is such that

Pr(∃w ∈ V s.t. |̃b(w)− b(w)| > ε) < δ .

The proof follows from the correctness of the algorithm
by Hayashi et al. [16] and of ABRA-s (Thm. 4).

6. EXPERIMENTAL EVALUATION
In this section we presents the results of our experimental

evaluation. We measure and analyze the performances of
ABRA-s in terms of its runtime and sample size and accu-
racy, and compared them with those of the exact algorithm
BA [9] and the approximation algorithm RK [24], which of-
fers the same guarantees as ABRA-s (computes an (ε, δ)-
approximation the bc of all nodes).

Implementation and Environment. We implement ABRA-
s and ABRA-d in C++, as an extension of the NetworKit li-
brary [29]. The code is available from http://matteo.rionda.
to/software/ABRA-radebetw.tbz2. We performed the ex-
periments on a machine with a AMD PhenomTM II X4 955
processor and 16GB of RAM, running FreeBSD 11.

Datasets and Parameters. We use graphs of various na-
ture (communication, citations, P2P, and social networks)

from the SNAP repository [20]. The characteristics of the
graphs are reported in the leftmost column of Table 2.
In our experiments we varied ε in the range [0.005, 0.3],

and we also evaluate a number of different sampling sched-
ules (see Sect. 6.2). In all the results we report, δ is fixed
to 0.1. We experimented with different values for this pa-
rameter, and, as expected, it has a very limited impact on
the nature of the results, given the logarithmic dependence
of the sample size on δ. We performed five runs for each
combination of parameters. The variance between the dif-
ferent runs was essentially insignificant, so we report, unless
otherwise specified, the results for a random run.

6.1 Runtime and Speedup
Our main goal was to develop an algorithm that can com-

pute an (ε, δ)-approximation of the bc of all nodes as fast as
possible. Hence we evaluate the runtime and the speedup
of ABRA-s w.r.t. BA and RK. The results are reported in
columns 3 to 5 (from the left) of Table 2 (the values for
ε = 0.005 are missing for Email-Enron and Cit-HepPh be-
cause in these case both RK and ABRA-s were slower than
BA). As expected, the runtime is a perfect linear function
of the sample size (column 9), which in turns grows as ε−2.
The speedup w.r.t. the exact algorithm BA is significant and
naturally decreases quadratically with ε. More interestingly
ABRA-s is always faster than RK, sometimes by a signifi-
cant factor. At first, one may think that this is due to the
reduction in the sample size (column 10), but a deeper anal-
ysis shows that this is only one component of the speedup,
which is almost always greater than the reduction in sample
size. The other component can be explained by the fact that
RK must perform an expensive computation (computing the
vertex diameter [24] of the graph) to determine the sample
size before it can start sampling, while ABRA-s can imme-
diately start sampling and rely on the stopping condition,
whose computation is inexpensive, as we will discuss. The
different speedups for different graphs are due to different
characteristics of the graphs: when the SP DAG between
two nodes has many paths, ABRA-s does more work per
sample than RK, which only backtracks along a single SP of
the DAG, hence the speedup is smaller.

Runtime breakdown. The main challenge in designing a
stopping condition for progressive sampling algorithm is strik-
ing the right balance between the strictness of the condition
(i.e., it should stop early) and the efficiency in evaluating it.
We now comment on the efficiency, and will report about
the strictness in Sect. 6.2 and 6.3. In columns 6 to 8 of Ta-
ble 2 we report the breakdown of the runtime into the main
components. It is evident that evaluating the stopping con-
dition amounts to an insignificant fraction of the runtime,
and most of the time is spent in computing the samples (se-
lection of nodes, execution of SP algorithm, update of the
bc estimations). The amount in the “Other” column corre-
sponds to time spent in logging and checking invariants. We
can then say that our stopping condition is extremely effi-
cient to evaluate, and ABRA-s is almost always doing “real”
work to improve the estimation.

6.2 Sample Size and Sample Schedule
We evaluate the final sample size of ABRA-s and the per-

formances of the “automatic” sample schedule (Sect. 4.1.1).
The results are reported in columns 9 and 10 of Table 2.
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Speedup
w.r.t.

Runtime
Breakdown (%) Absolute Error (×105)

Graph ε
Runtime

(sec.) BA RK Sampling
Stop

Cond. Other
Sample

Size

Reduction
w.r.t.

RK max avg stddev

Soc-Epinions1
Directed
|V | = 75, 879
|E| = 508, 837

0.005 483.06 1.36 2.90 99.983 0.014 0.002 110,705 2.64 70.84 0.35 1.14
0.010 124.60 5.28 3.31 99.956 0.035 0.009 28,601 2.55 129.60 0.69 2.22
0.015 57.16 11.50 4.04 99.927 0.054 0.018 13,114 2.47 198.90 0.97 3.17
0.020 32.90 19.98 5.07 99.895 0.074 0.031 7,614 2.40 303.86 1.22 4.31
0.025 21.88 30.05 6.27 99.862 0.092 0.046 5,034 2.32 223.63 1.41 5.24
0.030 16.05 40.95 7.52 99.827 0.111 0.062 3,668 2.21 382.24 1.58 6.37

P2p-Gnutella31
Directed
|V | = 62, 586
|E| = 147, 892

0.005 100.06 1.78 4.27 99.949 0.041 0.010 81,507 4.07 38.43 0.58 1.60
0.010 26.05 6.85 4.13 99.861 0.103 0.036 21,315 3.90 65.76 1.15 3.13
0.015 11.91 14.98 4.03 99.772 0.154 0.074 9,975 3.70 109.10 1.63 4.51
0.020 7.11 25.09 3.87 99.688 0.191 0.121 5,840 3.55 130.33 2.15 6.12
0.025 4.84 36.85 3.62 99.607 0.220 0.174 3,905 3.40 171.93 2.52 7.43
0.030 3.41 52.38 3.66 99.495 0.262 0.243 2,810 3.28 236.36 2.86 8.70

Email-Enron
Undirected
|V | = 36, 682
|E| = 183, 831

0.010 202.43 1.18 1.10 99.984 0.013 0.003 66,882 1.09 145.51 0.48 2.46
0.015 91.36 2.63 1.09 99.970 0.024 0.006 30,236 1.07 253.06 0.71 3.62
0.020 53.50 4.48 1.05 99.955 0.035 0.010 17,676 1.03 290.30 0.93 4.83
0.025 31.99 7.50 1.11 99.932 0.052 0.016 10,589 1.10 548.22 1.21 6.48
0.030 24.06 9.97 1.03 99.918 0.061 0.021 7,923 1.02 477.32 1.38 7.34

Cit-HepPh
Undirected
|V | = 34, 546
|E| = 421, 578

0.010 215.98 2.36 2.21 99.966 0.030 0.004 32,469 2.25 129.08 1.72 3.40
0.015 98.27 5.19 2.16 99.938 0.054 0.008 14,747 2.20 226.18 2.49 5.00
0.020 58.38 8.74 2.05 99.914 0.073 0.013 8,760 2.08 246.14 3.17 6.39
0.025 37.79 13.50 2.02 99.891 0.091 0.018 5,672 2.06 289.21 3.89 7.97
0.030 27.13 18.80 1.95 99.869 0.108 0.023 4,076 1.99 359.45 4.45 9.53

Table 2: Runtime, speedup, breakdown of runtime, sample size, reduction, and absolute error

As expected, the sample size grows with ε−2. We already
commented on the fact that ABRA-s uses a sample size
that is consistently (up to 4×) smaller than the one used
by RK and how this is part of the reason why ABRA-s is
much faster than RK. In Fig. 1 we show the behavior (on
P2p-Gnutella31, figures for other graphs can be found in
Appendix C of the extended online version [25]) of the fi-
nal sample size chosen by the automatic sample schedule
in comparison with static geometric sample schedules, i.e.,
schedules for which the sample size at iteration i+1 is c times
the size of the sample size at iteration i. We can see that the
automatic sample schedule is always better than the geomet-
ric ones, sometimes significantly depending on the value of c
(e.g., more than 2× decrease w.r.t. using c = 3 for ε = 0.05).
Effectively this means that the automatic sample schedule
really frees the user from having to selecting a parameter
whose impact on the performances of the algorithm may be
devastating (larger final sample size implies higher runtime).
Moreover, thanks to the automatic sample schedule, ABRA-
s always terminates after just two iterations, while this was
not the case for the geometric sample schedules (taking even
5 iterations in some cases): this means that effectively the
automatic sample schedules “jumps” directly to a sample
size for which the stopping condition will be verified. We
can sum up the results and say that the stopping condition
of ABRA-s stops at small sample sizes, smaller than those
used in RK, and the automatic sample schedule we designed
is extremely efficient at choosing the right successive sample
size.

6.3 Accuracy
We evaluate the accuracy of ABRA-s by measuring the

absolute error |̃b(v) − b(v)|. The theoretical analysis guar-
antees that this quantity should be at most ε for all nodes,
with probability at least 1 − δ. A first important result is
that in all the thousands of runs of ABRA-s, the maximum
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Figure 1: Final sample size for different sample
schedules on P2p-Gnutella

error was always smaller than ε (not just with probability
> 1−δ). We report statistics about the absolute error in the
three rightmost columns of Table 2 and in Fig. 2 (figures for
the other graphs are in Appendix C of the extended online
version [25]. The minimum error (not reported) was always
0. The maximum error is an order of magnitude smaller
than ε, and the average error is around three orders of mag-
nitude smaller than ε, with a very small standard deviation.
As expected, the error grows as ε−2. In Fig. 2 we show
the behavior of the maximum, average, and average plus
three standard deviations (approximately corresponding to
the 95% percentile) for Soc-Epinions1 (the vertical axis has
a logarithmic scale), to appreciate how most of the errors
are almost two orders of magnitude smaller than ε.
All these results show that ABRA-s is very accurate, more

than what is guaranteed by the theoretical analysis. This
can be explained by the fact that the bounds to the sam-
pling size, the stopping condition, and the sample schedule
are conservative, in the sense that ABRA-s may be sam-
pling more than necessary to obtain an (ε, δ)-approximation.
Tightening any of these components would result in a less
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Figure 2: Absolute error evaluation – Soc-Epinions1

conservative algorithm that offers the same approximation
quality guarantees, and is an interesting research direction.

6.4 Dynamic BC Approximation
We did not evaluate ABRA-d experimentally, but, given

its design, it is reasonable to expect that, when compared
to previous contributions offering the same quality guaran-
tees [5, 16], it would exhibit similar or even larger speedups
and reductions in the sample size than what ABRA-s had
w.r.t. RK. Indeed, the algorithm by Bergamini and Meyer-
henke [4] uses RK as a building block and it needs to con-
stantly keep track of (an upper bound on) the vertex diam-
eter of the graph, a very expensive operation. On the other
hand, the analysis of the sample size by Hayashi et al. [16]
uses very loose simultaneous deviation bounds (the union
bound). As already shown by Riondato and Kornaropoulos
[24], the resulting sample size is extremely large and they al-
ready showed how RK can use a smaller sample size. Since
we built over the work by Hayashi et al. [16] and ABRA-s im-
proves over RK, we can reasonably expect it to have better
performances than the algorithm by Hayashi et al. [16]

7. CONCLUSIONS
We presented ABRA, a family of sampling-based algo-

rithms for computing and maintaining high-quality approx-
imations of (variants of) the bc of all nodes in static and dy-
namic graphs with updates (both deletions and insertions).
We discussed a number of variants of our basic algorithms,
including finding the top-k nodes with higher bc, using im-
proved estimators, and special cases when there is a sin-
gle SP. ABRA greatly improves, theoretically and experi-
mentally, the current state of the art. The analysis relies
on Rademacher averages and on pseudodimension. To our
knowledge this is the first application of these concepts to
graph mining. In the future we plan to investigate stronger
bounds to the Rademacher averages, give stricter bounds to
the sample complexity of bc by studying the pseudodimen-
sion of the class of functions associated to it, and extend our
study to other network measures.
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